The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 821 –
840 of
2286
Wavefunctions of symmetrical nanoparticles are considered making use of induced representation method. It is shown that when, at the same total symmetry, the order of local symmetry group decreases, additional quantum numbers are required for complete labelling of electron states. It is shown that the labels of irreducible representations of intermediate subgroups can be used for complete classification of states in the case of repeating IRs in symmetry adapted linear combinations. The intermediate...
The basic concepts and models used in the study of nuclear magnetic resonance are
introduced. A simple imaging experiment is described, as well as, the reduction of the
problem of selective excitation to a classical problem in inverse scattering.
Quantum Lie algebras are generalizations of Lie algebras whose structure constants are power series in h. They are derived from the quantized enveloping algebras . The quantum Lie bracket satisfies a generalization of antisymmetry. Representations of quantum Lie algebras are defined in terms of a generalized commutator. The recent general results about quantum Lie algebras are introduced with the help of the explicit example of .
We prove the existence and the invariance of a Gibbs measure associated to the defocusing sub-quintic Nonlinear Schrödinger equations on the disc of the plane . We also prove an estimate giving some intuition to what may happen in dimensions.
We study the invariant symbolic calculi associated with the unitary irreducible representations of a compact Lie group.
Let be the semidirect product where is a connected semisimple non-compact Lie group acting linearly on a finite-dimensional real vector space . Let be a unitary irreducible representation of which is associated by the Kirillov-Kostant method of orbits with a coadjoint orbit of whose little group is a maximal compact subgroup of . We construct an invariant symbolic calculus for , under some technical hypothesis. We give some examples including the Poincaré group.
Currently displaying 821 –
840 of
2286