The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 161 –
180 of
203
We show that the lowest eigenvalue of the magnetic Schrödinger operator on a line bundle
over a compact Riemann surface is bounded by the -norm of the magnetic field
. This implies a similar bound on the multiplicity of the ground state. An example
shows that this degeneracy can indeed be comparable with even in
case of the trivial bundle.
We study various statistics related to the eigenvalues and eigenfunctions of random Hamiltonians in the localized regime. Consider a random Hamiltonian at an energy in the localized phase. Assume the density of states function is not too flat near . Restrict it to some large cube . Consider now , a small energy interval centered at that asymptotically contains infintely many eigenvalues when the volume of the cube grows to infinity. We prove that, with probability one in the large volume...
We discuss spectral and scattering theory of the discrete laplacian limited to a half-space. The interesting properties of such operators stem from the imposed boundary condition and are related to certain phenomena in surface physics.
We consider non-interacting particles subject to a fixed external potential and a self-generated magnetic field . The total energy includes the field energy and we minimize over all particle states and magnetic fields. In the case of spin-1/2 particles this minimization leads to the coupled Maxwell-Pauli system. The parameter tunes the coupling strength between the field and the particles and it effectively determines the strength of the field. We investigate the stability and the semiclassical...
In this work we derive a pair of nonlinear eigenvalue problems corresponding to the one-band effective Hamiltonian accounting for the spin-orbit interaction governing the electronic states of a quantum dot. We show that the pair of nonlinear problems allows for the minmax characterization of its eigenvalues under certain conditions which are satisfied for our example of a cylindrical quantum dot and the common InAs/GaAs heterojunction. Exploiting the minmax property we devise an efficient iterative...
We establish necessary and sufficient conditions on the real- or complex-valued potential
defined on for the relativistic Schrödinger operator to be bounded as an operator from the Sobolev space to its
dual .
This paper is the second part of the paper ``The level crossing problem in semi-classical
analysis I. The symmetric case''(Annales de l'Institut Fourier in honor of Frédéric
Pham). We consider here the case where the dispersion matrix is complex Hermitian.
Currently displaying 161 –
180 of
203