The search session has expired. Please query the service again.
In this paper we deal with mathematical modeling of real processes that are based on preference relations in the sense that, for every pair of distinct alternatives, the processes are linked to a value of preference degree of one alternative over the other one. The use of preference relations is usual in decision making, psychology, economics, knowledge acquisition techniques for knowledge-based systems, social choice and many other social sciences. For designing useful mathematical models of such...
We present in this paper a new multiobjective memetic algorithm scheme called MEMOX. In current multiobjective memetic algorithms, the parents used for recombination are randomly selected. We improve this approach by using a dynamic hypergrid which allows to select a parent located in a region of minimal density. The second parent selected is a solution close, in the objective space, to the first parent. A local search is then applied to the offspring. We experiment this scheme with a new multiobjective...
We consider the multi-attribute decision making problem with incomplete information on the decision maker's preferences, given by an imprecise vector utility function. We introduce an approximation set to the utility efficient set which may be used to aid a decision maker in reaching a final compromise strategy. We provide sorne properties and an interactive procedure based on such approximation set.
This paper presents a state-of-the-art survey on multicriteria scheduling and introduces a definition of a multicriteria scheduling problem. It provides a framework that allows to tackle multicriteria scheduling problems, according to Decision Aid concepts. This problem is decomposed into three different problems. The first problem is about obtaining a model. The second one is how to take criteria into account and the third one is about solving a scheduling problem. An extension to an existing notation...
This paper presents a state-of-the-art survey on multicriteria
scheduling and introduces a definition of a multicriteria scheduling problem. It provides a framework that allows to tackle multicriteria scheduling
problems, according to Decision Aid concepts. This
problem is decomposed into three different problems. The first problem
is about obtaining a model. The second one is how to take criteria
into account and the third one is about solving a scheduling problem. An extension
to an existing...
Mathematical programming under multiple objectives has emerged as a powerful tool to assist in the process of searching for decisions which best satisfy a multitude of conflicting objectives. In multiobjective linear programming problems it is usually impossible to optimize all objectives in a given system. Trade-offs are properties of inadequately designed system a thus can be eliminated through designing better one. Multiobjective De Novo linear programming is problem for designing optimal system...
Optimization is an important tool widely used in formulation of the mathematical model and design of various decision making problems related to the science and engineering. Generally, the real world problems are occurring in the form of multi-criteria and multi-choice with certain constraints. There is no such single optimal solution exist which could optimize all the objective functions simultaneously. In this paper, ϵ-constraint method along with Karush−Kuhn−Tucker (KKT) condition has been used...
In this paper, we propose a nonlinear multi-objective optimization problem whose parameters in the objective functions and constraints vary in between some lower and upper bounds. Existence of the efficient solution of this model is studied and gradient based as well as gradient free optimality conditions are derived. The theoretical developments are illustrated through numerical examples.
Currently displaying 1 –
20 of
22