The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 741 –
760 of
1854
The dynamical behaviour of a continuous time recurrent neural network model with a special weight matrix is studied. The network contains several identical excitatory neurons and a single inhibitory one. This special construction enables us to reduce the dimension of the system and then fully characterize the local and global codimension-one bifurcations. It is shown that besides saddle-node and Andronov-Hopf bifurcations, homoclinic and cycle fold bifurcations may occur. These bifurcation curves...
The self-consistent chemotaxis-fluid system
is considered under no-flux boundary conditions for and the Dirichlet boundary condition for on a bounded smooth domain
We describe the global dynamics of a disease transmission model between two regions which are connected via bidirectional or unidirectional transportation, where infection occurs during the travel as well as within the regions. We define the regional reproduction numbers and the basic reproduction number by constructing a next generation matrix. If the two regions are connected via bidirectional transportation, the basic reproduction number characterizes the existence of equilibria as well as...
A model of chemotaxis is analyzed that prevents blow-up of solutions. The model
consists of a system of nonlinear partial differential equations for the spatial population
density of a species and the spatial concentration of a chemoattractant in n-dimensional
space. We prove the existence of solutions, which exist globally, and are L∞-bounded on
finite time intervals. The hypotheses require nonlocal conditions on the species-induced
production of the chemoattractant.
In this paper we consider a model of chemorepulsion. We prove global existence and uniqueness of smooth classical solutions in space dimension n = 2. For n = 3,4 we prove the global existence of weak solutions. The convergence to steady states is shown in all cases.
This paper is devoted to the study of global existence of periodic solutions of a delayed
tumor-immune competition model. Also some numerical simulations are given to illustrate
the theoretical results
A system of quasilinear parabolic equations modelling chemotaxis and taking into account the volume filling effect is studied under no-flux boundary conditions. The resulting system is non-uniformly parabolic. A Lyapunov functional for the system is constructed. The proof of existence and uniqueness of regular global-in-time solutions is given in cases when either the Lyapunov functional is bounded from below or chemotactic forces are suitably weakened. In the first case solutions are uniformly...
This paper is concerned with a delayed single population model with hereditary effect. Under appropriate conditions, we employ a novel argument to establish a criterion of the global exponential stability of positive almost periodic solutions of the model. Moreover, an example and its numerical simulation are given to illustrate the main result.
Currently displaying 741 –
760 of
1854