Displaying 881 – 900 of 1850

Showing per page

Lévy Processes, Saltatory Foraging, and Superdiffusion

J. F. Burrow, P. D. Baxter, J. W. Pitchford (2008)

Mathematical Modelling of Natural Phenomena

It is well established that resource variability generated by spatial patchiness and turbulence is an important influence on the growth and recruitment of planktonic fish larvae. Empirical data show fractal-like prey distributions, and simulations indicate that scale-invariant foraging strategies may be optimal. Here we show how larval growth and recruitment in a turbulent environment can be formulated as a hitting time problem for a jump-diffusion process. We present two theoretical results. Firstly,...

Limitation and Regulation of Ecological Populations: a Meta-analysis of Tipula paludosa Field Data

R. P. Blackshaw, S. V. Petrovskii (2010)

Mathematical Modelling of Natural Phenomena

Whether the size of an animal population is environmentally limited or regulated by density dependent negative feedback mechanisms is of ecological interest. Proponents of limitation theory have issued a set of specific challenges which are addressed in this paper using field data for the insect Tipula paludosa. This species is known to be subject to population crashes caused by adverse environmental conditions and assumed to be limited. We re-examine published data in support of this hypothesis...

Linking population genetics to phylogenetics

Paul G. Higgs (2008)

Banach Center Publications

Population geneticists study the variability of gene sequences within a species, whereas phylogeneticists compare gene sequences between species and usually have only one representative sequence per species. Stochastic models in population genetics are used to determine probability distributions for gene frequencies and to predict the probability that a new mutation will become fixed in a population. Stochastic models in phylogenetics describe the substitution process in the single sequence that...

Local Bifurcations in a Nonlinear Model of a Bioreactor

Dimitrova, Neli (2009)

Serdica Journal of Computing

This paper is partially supported by the Bulgarian Science Fund under grant Nr. DO 02– 359/2008.We consider a nonlinear model of a continuously stirred bioreactor and study the stability of the equilibrium points with respect to practically important model parameters. We determine regions in the parameter space where the steady states undergo transcritical and Hopf bifurcations. In the latter case, the stability of the emerged limit cycles is also studied. Numerical simulations in the computer algebra...

Local Collapses in the Truscott-Brindley Model

I. Siekmann, H. Malchow (2008)

Mathematical Modelling of Natural Phenomena

Relaxation oscillations are limit cycles with two clearly different time scales. In this article the spatio-temporal dynamics of a standard prey-predator system in the parameter region of relaxation oscillation is investigated. Both prey and predator population are distributed irregularly at a relatively high average level between a maximal and a minimal value. However, the slowly developing complex pattern exhibits a feature of “inverse excitability”: Both populations show collapses which occur...

Currently displaying 881 – 900 of 1850