Displaying 81 – 100 of 125

Showing per page

The Uniform Minimum-Ones 2SAT Problem and its Application to Haplotype Classification

Hans-Joachim Böckenhauer, Michal Forišek, Ján Oravec, Björn Steffen, Kathleen Steinhöfel, Monika Steinová (2010)

RAIRO - Theoretical Informatics and Applications

Analyzing genomic data for finding those gene variations which are responsible for hereditary diseases is one of the great challenges in modern bioinformatics. In many living beings (including the human), every gene is present in two copies, inherited from the two parents, the so-called haplotypes. In this paper, we propose a simple combinatorial model for classifying the set of haplotypes in a population according to their responsibility for a certain genetic disease. This model is based...

The Use of CFSE-like Dyes for Measuring Lymphocyte Proliferation : Experimental Considerations and Biological Variables

B.J.C. Quah, A.B. Lyons, C.R. Parish (2012)

Mathematical Modelling of Natural Phenomena

The measurement of CFSE dilution by flow cytometry is a powerful experimental tool to measure lymphocyte proliferation. CFSE fluorescence precisely halves after each cell division in a highly predictable manner and is thus highly amenable to mathematical modelling. However, there are several biological and experimental conditions that can affect the quality of the proliferation data generated, which may be important to consider when modelling dye...

The Wiener number of Kneser graphs

Rangaswami Balakrishnan, S. Francis Raj (2008)

Discussiones Mathematicae Graph Theory

The Wiener number of a graph G is defined as 1/2∑d(u,v), where u,v ∈ V(G), and d is the distance function on G. The Wiener number has important applications in chemistry. We determine the Wiener number of an important family of graphs, namely, the Kneser graphs.

The Wiener number of powers of the Mycielskian

Rangaswami Balakrishnan, S. Francis Raj (2010)

Discussiones Mathematicae Graph Theory

The Wiener number of a graph G is defined as 1 / 2 u , v V ( G ) d ( u , v ) , d the distance function on G. The Wiener number has important applications in chemistry. We determine a formula for the Wiener number of an important graph family, namely, the Mycielskians μ(G) of graphs G. Using this, we show that for k ≥ 1, W ( μ ( S k ) ) W ( μ ( T k ) ) W ( μ ( P k ) ) , where Sₙ, Tₙ and Pₙ denote a star, a general tree and a path on n vertices respectively. We also obtain Nordhaus-Gaddum type inequality for the Wiener number of μ ( G k ) .

Theorem on signatures

Władysław Kulpa, Andrzej Szymański (2007)

Acta Universitatis Carolinae. Mathematica et Physica

Thermal ablation modeling via the bioheat equation and its numerical treatment

Agnieszka Bartłomiejczyk, Henryk Leszczyński, Artur Poliński (2015)

Applicationes Mathematicae

The phenomenon of thermal ablation is described by Pennes' bioheat equation. This model is based on Newton's law of cooling. Many approximate methods have been considered because of the importance of this issue. We propose an implicit numerical scheme which has better stability properties than other approaches.

Thermodynamics of DNA microarrays

Enrico Carlon (2008)

Banach Center Publications

DNA microarrays have been widely used in molecular biology laboratories. The main current application of these devices is the determination of the gene expression level for thousands of genes simultaneously. Here we review a recently introduced physical model for hybridization (i.e. the binding of complementary DNA strands) in Affymetrix arrays and compare it to experimental results. The experimental data follow rather well the microscopic model and the approach offers several advantages compared...

Three-dimensional reconstruction from projections

Jiří Jelínek, Karel Segeth, T. R. Overton (1985)

Aplikace matematiky

Computerized tomograhphy is a technique for computation and visualization of density (i.e. X- or γ -ray absorption coefficients) distribution over a cross-sectional anatomic plane from a set of projections. Three-dimensional reconstruction may be obtained by using a system of parallel planes. For the reconstruction of the transverse section it is necessary to choose an appropriate method taking into account the geometry of the data collection, the noise in projection data, the amount of data, the...

Time delays in proliferation and apoptosis for solid avascular tumour

Urszula Foryś, Mikhail Kolev (2003)

Banach Center Publications

The role of time delays in solid avascular tumour growth is considered. The model is formulated in terms of a reaction-diffusion equation and mass conservation law. Two main processes are taken into account-proliferation and apoptosis. We introduce time delay first in underlying apoptosis only and then in both processes. In the absence of necrosis the model reduces to one ordinary differential equation with one discrete delay which describes the changes of tumour radius. Basic properties of the...

Time discrete 2-sex population model

C. O. A. Sowunmi (2003)

Banach Center Publications

A time-discrete 2-sex model with gestation period is analysed. It is significant that the conditions for local stability of a nontrivial steady state do not require that the expected number of female offspring per female equal unity. This is in contrast to results obtained by Curtin and MacCamy [4] and the author [10].

Time domain computational modelling of 1D arterial networks in monochorionic placentas

Victoria E. Franke, Kim H. Parker, Ling Y. Wee, Nicholas M. Fisk, Spencer J. Sherwin (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we outline the hyperbolic system of governing equations describing one-dimensional blood flow in arterial networks. This system is numerically discretised using a discontinuous Galerkin formulation with a spectral/ h p element spatial approximation. We apply the numerical model to arterial networks in the placenta. Starting with a single placenta we investigate the velocity waveform in the umbilical artery and its relationship with the distal bifurcation geometry and the terminal resistance....

Time domain computational modelling of 1D arterial networks in monochorionic placentas

Victoria E. Franke, Kim H. Parker, Ling Y. Wee, Nicholas M. Fisk, Spencer J. Sherwin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we outline the hyperbolic system of governing equations describing one-dimensional blood flow in arterial networks. This system is numerically discretised using a discontinuous Galerkin formulation with a spectral/hp element spatial approximation. We apply the numerical model to arterial networks in the placenta. Starting with a single placenta we investigate the velocity waveform in the umbilical artery and its relationship with the distal bifurcation geometry and the terminal resistance....

Time to the convergence of evolution in the space of population states

Iwona Karcz-Dulęba (2004)

International Journal of Applied Mathematics and Computer Science

Phenotypic evolution of two-element populations with proportional selection and normally distributed mutation is considered. Trajectories of the expected location of the population in the space of population states are investigated. The expected location of the population generates a discrete dynamical system. The study of its fixed points, their stability and time to convergence is presented. Fixed points are located in the vicinity of optima and saddles. For large values of the standard deviation...

Currently displaying 81 – 100 of 125