The search session has expired. Please query the service again.
Displaying 1161 –
1180 of
1854
The Robinson-Foulds (RF) distance is the most popular method of evaluating the dissimilarity between phylogenetic trees. In this paper, we define and explore in detail properties of the Matching Cluster (MC) distance, which can be regarded as a refinement of the RF metric for rooted trees. Similarly to RF, MC operates on clusters of compared trees, but the distance evaluation is more complex. Using the graph theoretic approach based on a minimum-weight perfect matching in bipartite graphs, the values...
In this paper we propose a mathematical model to describe the evolution of leukemia
in the bone marrow. The model is based on a reaction-diffusion system of equations in a porous
medium. We show the existence of two stationary solutions, one of them corresponds to the normal
case and another one to the pathological case. The leukemic state appears as a result of a bifurcation
when the normal state loses its stability. The critical conditions of leukemia development
are determined by the proliferation...
We consider a stochastic SIR system and we prove the existence, uniqueness and positivity of solution. Moreover the existence of an invariant measure under a suitable condition on the coefficients is studied.
Theory of chemical reactions in complex mixtures exhibits the following problem. Single reacting species follow an intrinsic kinetic law. However, the observable quantity, which is a mean of individual concentrations, follows a different law. This one is called «alias» of intrinsic kinetics. In this paper the phenomenon of alias of uniform families of differential equations is discussed in general terms.
We develop and test a relatively simple enhancement of the classical model reduction method applied to a class of chemical networks with mass conservation properties. Both the methods, being (i) the standard quasi-steady-state approximation method, and (ii) the novel so-called delayed quasi-steady-state approximation method, firstly proposed by Vejchodský (2014), are extensively presented. Both theoretical and numerical issues related to the setting of delays are discussed. Namely, for one slightly...
In this paper, we consider solutions to the following chemotaxis system with general sensitivity
Here, and are positive constants, is a smooth function on satisfying and is a bounded domain of (). It is well known that the chemotaxis system with direct sensitivity (, ) has blowup solutions in the case where . On the other hand, in the case where with , any solution to the system exists globally in time and is bounded. We present a sufficient condition for the boundedness of...
In this paper a general class of Boltzmann-like bilinear integro-differential systems of equations (GKM, Generalized Kinetic Models) is considered. It is shown that their solutions can be approximated by the solutions of appropriate systems describing the dynamics of individuals undergoing stochastic interactions (at the "microscopic level"). The rate of approximation can be controlled. On the other hand the GKM result in various models known in biomathematics (at the "macroscopic level") including...
In a simple FitzHugh-Nagumo neuronal model with one fast and two slow variables, a
sequence of period-doubling bifurcations for small-scale oscillations precedes the
transition into the spiking regime. For a wide range of values of the timescale separation
parameter, this scenario is recovered numerically. Its relation to the singularly
perturbed integrable system is discussed.
This paper extends the volume filling chemotaxis model [18, 26] by taking into account the cell population interactions. The
extended chemotaxis models have nonlinear diffusion and chemotactic sensitivity depending
on cell population density, which is a modification of the classical Keller-Segel model in
which the diffusion and chemotactic sensitivity are constants (linear). The existence and
boundedness of global solutions of these models are discussed and...
The paper presents a new approach to fuzzy classification in the case of missing data. Rough-fuzzy sets are incorporated into logical type neuro-fuzzy structures and a rough-neuro-fuzzy classifier is derived. Theorems which allow determining the structure of the rough-neuro-fuzzy classifier are given. Several experiments illustrating the performance of the roughneuro-fuzzy classifier working in the case of missing features are described.
Many doctors believe that a patient will survive a heart attack unless a succeeding attack occurs in a week. Treating heart attacks as failures in Bernoulli trials we reduce the lifetime after a heart attack to the waiting time for the first failure followed by a success run shorter than a given k. In order to test the "true" critical period of the lifetime we need its distribution. The probability mass function and cumulative distribution function of the waiting time are expressed in explicit and...
Currently displaying 1161 –
1180 of
1854