The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider the stabilization of
Maxwell's equations with space-time variable coefficients
in a bounded region with a smooth boundary
by means of linear or nonlinear Silver–Müller boundary condition.
This is based on some stability estimates
that are obtained using the “standard" identity with multiplier
and appropriate properties of the feedback.
We deduce an explicit decay rate of the energy, for instance
exponential,
polynomial or logarithmic decays are available for appropriate
feedbacks.
...
We propose a direct approach to obtain the boundary stabilization of the isotropic linear elastodynamic system by a natural feedback; this method uses local coordinates in the expression of boundary integrals as a main tool. It leads to an explicit decay rate of the energy function and requires weak geometrical conditions: for example, the spacial domain can be the difference of two star-shaped sets.
Currently displaying 21 –
25 of
25