The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider the stabilization of Maxwell’s equations with space-time variable coefficients in a bounded region with a smooth boundary by means of linear or nonlinear Silver–Müller boundary condition. This is based on some stability estimates that are obtained using the “standard” identity with multiplier and appropriate properties of the feedback. We deduce an explicit decay rate of the energy, for instance exponential, polynomial or logarithmic decays are available for appropriate feedbacks.
We consider the stabilization of
Maxwell's equations with space-time variable coefficients
in a bounded region with a smooth boundary
by means of linear or nonlinear Silver–Müller boundary condition.
This is based on some stability estimates
that are obtained using the “standard" identity with multiplier
and appropriate properties of the feedback.
We deduce an explicit decay rate of the energy, for instance
exponential,
polynomial or logarithmic decays are available for appropriate
feedbacks.
...
Currently displaying 21 –
23 of
23