The search session has expired. Please query the service again.
Displaying 201 –
220 of
282
With reference to the work of Verriest and Lewis (1991) on continuous finite-dimensional systems, the linear quadratic minimum-time problem is considered for discrete distributed systems and discrete distributed time delay systems. We treat the problem in two variants, with fixed and free end points. We consider a cost functional J which includes time, energy and precision terms, and then we investigate the optimal pair (N, u) which minimizes J.
The paper deals with the particle filter in state estimation of a discrete-time nonlinear non-Gaussian system. The goal of the paper is to design a sample size adaptation technique to guarantee a quality of a filtering estimate produced by the particle filter which is an approximation of the true filtering estimate. The quality is given by a difference between the approximate filtering estimate and the true filtering estimate. The estimate may be a point estimate or a probability density function...
In this paper, the problem of obtaining a periodic model in state-space form of a linear process that can be modeled by linear difference equations with periodic coefficients is considered. Such a problem was already studied and solved in [r71] on the basis of the notion of system equivalence, but under the assumption that the process has no null characteristic multiplier. In this paper such an assumption is removed in order to generalize the results in [r71] to linear periodic processes with possibly...
In this paper, novel pipelined architectures for the implementation of the frequency domain linear equalizer are presented. The Frequency Domain (FD) LMS algorithm is utilized for the adaptation of equalizer coefficients. The pipelining of the FD LMS linear equalizer is achieved by introducing an amount of time delay into the original adaptive scheme, and following proper delay retiming. Simulation results are presented that illustrate the performance of the effect of the time delay introduced into...
Two models of positive 2D discrete-time linear Lyapunov systems are introduced. For both the models necessary and sufficient conditions for positivity, asymptotic stability, reachability and observability are established. The discussion is illustrated with numerical examples.
A partial realization problem for positive linear discrete-time systems is addressed. Sufficient conditions for the existence of its solution are established. A procedure for the computation of a positive partial realization for a given finite sequence of the values of the impulse response is proposed. The procedure is illustrated by four numerical examples.
The Weierstrass-Kronecker theorem on the decomposition of the regular pencil is extended to fractional descriptor timevarying discrete-time linear systems. A method for computing solutions of fractional systems is proposed. Necessary and sufficient conditions for the positivity of these systems are established.
A new class of fractional 2D linear discrete-time systems is introduced. The fractional difference definition is applied to each dimension of a 2D Roesser model. Solutions of these systems are derived using a 2D Z-transform. The classical Cayley-Hamilton theorem is extended to 2D fractional systems described by the Roesser model. Necessary and sufficient conditions for the positivity and stabilization by the state-feedback of fractional 2D linear systems are established. A procedure for the computation...
The realization problem for positive multivariable discrete-time systems with delays in the state and inputs is formulated and solved. Conditions for its solvability and the existence of a minimal positive realization are established. A procedure for the computation of a positive realization of a proper rational matrix is presented and illustrated with examples.
The paper addresses receding-horizon (predictive) control for polytopic discrete-time systems subject to input/state constraints and unknown but bounded disturbances. The objective is to optimize nominal performance while guaranteeing robust stability and constraint satisfaction. The latter goal is achieved by exploiting robust invariant sets under linear and nonlinear control laws. Tradeoffs between maximizing the initial feasibility region and guaranteeing ultimate boundedness in the smallest...
Currently displaying 201 –
220 of
282