The search session has expired. Please query the service again.
Displaying 81 –
100 of
282
A single variable controller is developed in the predictive control framework based upon minimisation of the LQ criterion with infinite output and control horizons. The infinite version of the predictive cost function results in better stability properties of the controller and still enables to incorporate constraints into the control design. The constrained controller consists of two parts: time-invariant nominal LQ controller and time-variant part given by Youla–Kučera parametrisation of all stabilising...
This paper deals with discrete-time Markov control processes in Borel spaces with unbounded rewards. Under suitable hypotheses, we show that a randomized stationary policy is optimal for a certain expected constrained problem (ECP) if and only if it is optimal for the corresponding pathwise constrained problem (pathwise CP). Moreover, we show that a certain parametric family of unconstrained optimality equations yields convergence properties that lead to an approximation scheme which allows us to...
We prove a convergence result for a time discrete process of the form under weak conditions on the function . This result is a slight generalization of the convergence result given in [5].Furthermore, we discuss applications to minimizing problems, boundary value problems and systems of nonlinear equations.
The paper presents several solutions to the discrete-time generalized predictive (GPC) controller problem, including an anticipative filtration mechanism, which are suitable for plants with nonzero transportation delays. Necessary modifications of the GPC design procedure required for controlling plants based on their non-minimal models are discussed in detail. Although inevitably invoking the troublesome pole-zero cancellation problem, such models can be used in adaptive systems as a remedy for...
This contribution deals with the discrete-time linear state models of pure deadtime multi-input, multi-output dynamic processes. A straightforward way is presented to obtain minimum-dimensional state realizations of these processes.
This article gives an overview of discretized Lyapunov functional methods for time-delay systems. Quadratic Lyapunov–Krasovskii functionals are discretized by choosing the kernel to be piecewise linear. As a result, the stability conditions may be written in the form of linear matrix inequalities. Conservatism may be reduced by choosing a finer mesh. Simplification techniques, including elimination of variables and using integral inequalities are also discussed. Systems with multiple delays and...
Sensor networks are regarded as a promising technology in the field of information perception and processing owing to the ease of deployment, cost-effectiveness, flexibility, as well as reliability. The information exchange among sensors inevitably suffers from various network-induced phenomena caused by the limited resource utilization and complex application scenarios, and thus is required to be governed by suitable resource-saving communication mechanisms. It is also noteworthy that noises in...
This paper addresses the distributed resilient filtering for discrete-time large-scale systems (LSSs) with energy constraints, where their information are collected by sensor networks with a same topology structure. As a typical model of information physics systems, LSSs have an inherent merit of modeling wide area power systems, automation processes and so forth. In this paper, two kinds of channels are employed to implement the information transmission in order to extend the service time of sensor...
Currently displaying 81 –
100 of
282