Rigidité différentiable des groupes fuchsiens

Étienne Ghys

Publications Mathématiques de l'IHÉS (1993)

  • Volume: 78, page 163-185
  • ISSN: 0073-8301

How to cite

top

Ghys, Étienne. "Rigidité différentiable des groupes fuchsiens." Publications Mathématiques de l'IHÉS 78 (1993): 163-185. <http://eudml.org/doc/104090>.

@article{Ghys1993,
author = {Ghys, Étienne},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {differentiable rigidity; Euler number; Anosov flow; weak stable foliation; Fuchsian groups},
language = {fre},
pages = {163-185},
publisher = {Institut des Hautes Études Scientifiques},
title = {Rigidité différentiable des groupes fuchsiens},
url = {http://eudml.org/doc/104090},
volume = {78},
year = {1993},
}

TY - JOUR
AU - Ghys, Étienne
TI - Rigidité différentiable des groupes fuchsiens
JO - Publications Mathématiques de l'IHÉS
PY - 1993
PB - Institut des Hautes Études Scientifiques
VL - 78
SP - 163
EP - 185
LA - fre
KW - differentiable rigidity; Euler number; Anosov flow; weak stable foliation; Fuchsian groups
UR - http://eudml.org/doc/104090
ER -

References

top
  1. [An] ANOSOV, D. V., Geodesic flows on compact manifolds of negative curvature, Proc. Steklov Math. Inst., A.M.S. Translations (1969). 
  2. [A-A] ARNOLD, V., AVEZ, A., Problèmes ergodiques de la mécanique classique, Gauthier-Villars, 1967. Zbl0149.21704MR35 #334
  3. [Av] AVEZ, A., Anosov diffeomorphisms, Proc. Inter. Symp. topological dynamics, Benjamin (1968), 17-51. Zbl0203.26101MR38 #4646
  4. [Ba] BARBOT, T., Flots d'Anosov sur les variétés de dimension 3, en préparation. 
  5. [B-F-L] BENOIST, Y., FOULON, F., LABOURIE, F., Flots d'Anosov à distribution stable et instable différentiable, J. Amer. Math. Soc., 1 (1992), 33-74. Zbl0759.58035MR93b:58112
  6. [B-L] BENOIST, Y., LABOURIE, F., Sur les difféomorphismes d'Anosov affines à feuilletages stable et instable différentiables, prépublication, 1992. 
  7. [Bo] BOWEN, R., Equilibrium states and the ergodic theory of Anosov diffeomorphisms, III, Springer lecture notes in math., 470 (1975). Zbl0308.28010MR56 #1364
  8. [C-C] CANTWELL, J., CONLON, L., Endsets of exceptional leaves : a theorem of Duminy, unpublished notes, Saint Louis University. Zbl1011.57009
  9. [Fr] FRANKS, J., Anosov diffeomorphisms, Proc. Symp. Pure Maths., vol. 14 (1970), 61-93. Zbl0207.54304MR42 #6871
  10. [Gh1] GHYS, E., Actions localement libres du groupe affine, Invent. Math., 82 (1985), 479-526. Zbl0577.57010MR87f:58084
  11. [Gh2] GHYS, E., Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Scient. Ec. Norm Sup., 20 (1987), 251-270. Zbl0663.58025MR89h:58153
  12. [Gh3] GHYS, E., Classe d'Euler et minimal exceptionnel, Topology, 26 (1987), 93-105. Zbl0607.57020MR88b:57032
  13. [Gh4] GHYS, E., Le cercle à l'infini des surfaces à courbure négative, Proc. ICM Kyoto 1990, Springer, Vol. I, 501-509. Zbl0747.53032MR93f:58188
  14. [Gh5] GHYS, E., Déformations de flots d'Anosov et de groupes fuchsiens, Ann. Inst. Fourier, 42 (1992), 209-247. Zbl0759.58036MR93j:58111
  15. [G-T] GHYS, E., TSUBOI, T., Différentiabilité des conjugaisons entre systèmes dynamiques de dimension 1, Ann. Inst. Fourier, 38 (1988), 215-244. Zbl0633.58018MR89i:58119
  16. [Gr] GROMOV, M., Three remarks on geodesics dynamics and fundamental group, texte non publié, SUNY, vers 1977. Zbl1002.53028
  17. [H-T] HANDEL, M., THURSTON, W., Anosov flows on new 3-manifolds, Invent. Math., 59 (1980), 95-103. Zbl0435.58019MR81i:58032
  18. [Kan] KANAI, M., Geodesic flows of negatively curved manifolds with smooth stable and unstable foliations, Ergod. Th. A T T Dynam. Syst., 8 (1988), 215-239. Zbl0634.58020MR89k:58230
  19. [Man] MAÑÉ, R., Ergodic theory and differentiable dynamics, Springer Verlag (1987). Zbl0616.28007MR88c:58040
  20. [Mat] MATSUMOTO, S., Some remarks on foliated S1-bundles, Invent. Math., 90 (1987), 343-358. Zbl0681.58007MR88k:58016
  21. [Mi] MILNOR, J., On the existence of a connection with curvature zero, Comment. Math. Helv., 32 (1958), 215-223. Zbl0196.25101MR20 #2020
  22. [Ot] OTAL J.-P., Le spectre marqué des surfaces à courbure négative, Annals of Math., 131 (1990), 151-162. Zbl0699.58018MR91c:58026
  23. [Ra] RATNER, M., Markov splittings for U-flows in three-dimensional manifolds, Mat. Zametki, 6 (1969), 693-704. Zbl0198.56804MR41 #5597
  24. [Su1] SULLIVAN, D., Discrete conformal groups and measurable dynamics, Bull. A.M.S., 6 (1982), 53-73. Zbl0489.58027MR83c:58066
  25. [Su2] SULLIVAN, D., Quasi-conformal homeomorphisms and dynamics II. Structural stability implies hyperbolicity for Kleinian groups, Acta Math., 155 (1985), 243-260. Zbl0606.30044MR87i:58104
  26. [Su3] SULLIVAN, D., Bounds, quadratic differentials and renormalization conjectures, Mathematics into the 21st century, vol. 2, AMS Centennial publications, Providence, R.I., 1991. Zbl0936.37016
  27. [Th] THURSTON, W., Foliations on 3-manifolds which are circle bundles, Ph.D. Thesis, Berkeley (1972). 
  28. [Wo] WOOD J., Bundles with totally disconnected structure group, Comment. Math. Helv., 46 (1971), 257-273. Zbl0217.49202MR45 #2732

Citations in EuDML Documents

top
  1. Pierre Mounoud, Complétude et flots nul-géodésibles en géométrie lorentzienne
  2. Julio C. Rebelo, Ergodicity and rigidity for certain subgroups of Diff ω ( S 1 )
  3. Thierry Barbot, Plane affine geometry and Anosov flows
  4. Paweł Walczak, Losing Hausdorff dimension while generating pseudogroups
  5. Takeo Noda, Projectively Anosov flows with differentiable (un)stable foliations
  6. Laurent Guieu, Nombre de rotation, structures géométriques sur un cercle et groupe de Bott-Virasoro
  7. François Salein, Variétés anti-de Sitter de dimension 3 exotiques
  8. Takeo Noda, Regular projectively Anosov flows with compact leaves
  9. Pierre Mounoud, Feuilletages totalement géodésiques, flots riemanniens et variétés de Seifert
  10. Masayuki Asaoka, Regular projectively Anosov flows on three-dimensional manifolds

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.