Logarithmic Sobolev inequalities for unbounded spin systems revisited
Séminaire de probabilités de Strasbourg (2001)
- Volume: 35, page 167-194
Access Full Article
topHow to cite
topLedoux, Michel. "Logarithmic Sobolev inequalities for unbounded spin systems revisited." Séminaire de probabilités de Strasbourg 35 (2001): 167-194. <http://eudml.org/doc/114059>.
@article{Ledoux2001,
author = {Ledoux, Michel},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Poincaré inequality; logarithm Sobolev inequality; spin system; semigroup analysis; Hamiltonian},
language = {eng},
pages = {167-194},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Logarithmic Sobolev inequalities for unbounded spin systems revisited},
url = {http://eudml.org/doc/114059},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Ledoux, Michel
TI - Logarithmic Sobolev inequalities for unbounded spin systems revisited
JO - Séminaire de probabilités de Strasbourg
PY - 2001
PB - Springer - Lecture Notes in Mathematics
VL - 35
SP - 167
EP - 194
LA - eng
KW - Poincaré inequality; logarithm Sobolev inequality; spin system; semigroup analysis; Hamiltonian
UR - http://eudml.org/doc/114059
ER -
References
top- [Ai] S. Aida. Uniform positivity improving property, Sobolev inequalities and spectral gaps. J. Funct. Anal.158, 152-185 (1998). Zbl0914.47041MR1641566
- [A-M-S] S. Aida, T. Masuda, I. Shigekawa. Logarithmic Sobolev inequalities and exponential integrability. J. Funct. Anal.126, 83-101 (1994). Zbl0846.46020MR1305064
- [An] C. Ané ET AL. Sur les inégalités de Sobolev logarithmiques (2000). Panoramas et Synthèses, S.M.F., to appear. Zbl0982.46026MR1845806
- [Ba1] D. Bakry. L'hypercontractivité et son utilisation en théorie des semigroupes. Ecole d'Eté de Probabilités de St-Flour. Lecture Notes in Math.1581, 1-114 (1994). Springer-Verlag. Zbl0856.47026MR1307413
- [Ba2] D. Bakry. On Sobolev and logarithmic Sobolev inequalities for Markov semigroups. New trends in.Stochastic Analysis. 43-75 (1997). World Scientific. MR1654503
- [Ba-E] D. Bakry, M. Emery. Diffusions hypercontractives. Séminaire de Probabilités XIX. Lecture Notes in Math.1123, 177-206 (1985). Springer-Verlag. Zbl0561.60080MR889476
- [Ba-L] D. Bakry, M. Ledoux. Lévy-Gromov's isoperimetric inequality for an infinite dimensional diffusion generator. Invent. math.123, 259-281 (1996). Zbl0855.58011MR1374200
- [Bo1] S. Bobkov. An isoperimetric inequality on the discrete cube and an elementary proof of the isoperimetric inequality in Gauss space. Ann. Probability25, 206-214 (1997). Zbl0883.60031MR1428506
- [Bo2] S. Bobkov. Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probability27, 1903-1921 (1999). Zbl0964.60013MR1742893
- [B-G] S. Bobkov, F. Götze. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities (1998). J. Funct. Anal.163, 1-28 (1999). Zbl0924.46027MR1682772
- [B-H1] TH. Bodineau, B. Helffer. On Log-Sobolev inequalities for unbounded spin systems. J. Funct. Anal.166, 168-178 (1999). Zbl0972.82035MR1704666
- [B-H2] TH. Bodineau, B. Helffer. Correlations, spectral gaps and Log-Sobolev inequalities for unbounded spins systems. Differential Equations and Mathematical Physics. Birmingham 1999, 27-42. International Press (1999). Zbl1161.82306MR1764741
- [B-L] H.J. Brascamp, E.H. Lieb. On extensions of the Brunn-Minkovski and Prékopa-Leindler theorems, including inequalities for log-concave functions, and with an application to the diffusion equation. J. Funct. Anal.22, 366-389 (1976). Zbl0334.26009MR450480
- [Fo] P. Fougères. Hypercontractivité et isopérimétrie gaussienne. Applications aux systèmes de spins (1999). Ann. Inst. H. Poincaré, to appear. Zbl0983.60097MR1792659
- [G-H-L] S. Gallot, D. Hulin, J. Lafontaine. Riemannian Geometry. Second Edition. Springer (1990). Zbl0716.53001MR1083149
- [G-R] I. Gentil, C. Roberto. Spectral gaps for spin system: some non-convex phase examples (2000). J. Funct. Anal., to appear. Zbl0992.60091MR1814423
- [Gr] L. Gross. Logarithmic Sobolev inequalities. Amer. J. Math.97, 1061-1083 (1975). Zbl0318.46049MR420249
- [G-Z] A. Guionnet, B. Zegarlinski. Lectures on logarithmic Sobolev inequalities (2000). Zbl1125.60111
- [He1] B. Helffer. Remarks on decay of correlations and Witten Laplacians - Brascamp-Lieb inequalities and semi-classical analysis. J. Funct. Anal. (1999). Zbl0921.35141MR1624506
- [He2] B. Helffer. Remarks on decay of correlations and Witten Laplacians III- Application to logarithmic Sobolev inequalites. Ann. Inst. H. Poincaré35, 483-508 (1999). Zbl1055.82004MR1702239
- [He3] B. Helffer. Semiclassical analysis and statistical mechanics. Notes (1999).
- [He-S] B. Helffer, J. Sjöstrand. On the correlation for the Kac like models in the convex case. J. Statist. Phys.74, 349-369 (1994). Zbl0946.35508MR1257821
- [H-S] R. Holley, D. Stroock. Logarithmic Sobolev inequalities and stochastic Ising models. J. Statist. Phys.46, 1159-1194 (1987). Zbl0682.60109MR893137
- [Le1] M. Ledoux. Concentration of measure and logarithmic Sobolev inequalities. Séminaire de Probabilités XXXIII. Lecture Notes in Math.1709, 120-216 (1999). Springer. Zbl0957.60016MR1767995
- [Le2] M. Ledoux. The geometry of Markov diffusion generators (1998). Ann. Fac. Sci. Toulouse, to appear. Zbl0980.60097MR1813804
- [L-Y] S.L. Lu, H.T. Yau. Spectral gap and logarithmic Sobolev inequalities for Kawasaki and Glauber dynamics. Comm. Math. Phys.156, 399-433 (1993). Zbl0779.60078MR1233852
- [M-O1] F. Martinelli, E. Olivieri. Approach to equilibrium of Glauber dynamics in the one phase region I. The attractive case. Comm. Math. Phys.161, 447-486 (1994). Zbl0793.60110MR1269387
- [M-O2] F. Martinelli, E. Olivieri. Approach to equilibrium of Glauber dynamics in the one phase region II. The general case. Comm. Math. Phys.161, 487-514 (1994). Zbl0793.60111MR1269388
- [Ro] G. Royer. Une initiation aux inégalités de Sobolev logarithmiques. Cours Spécialisés. Soc. Math. de France (1999). Zbl0927.60006MR1704288
- [S-Z1] D. Stroock, B. Zegarlinski. The logarithmic Sobolev inequality for continuous spin systems on a lattice. J. Funct. Anal.104, 299-326 (1992). Zbl0794.46025MR1153990
- [S-Z2] D. Stroock, B. Zegarlinski. The logarithmic Sobolev inequality for discrete spin systems on a lattice. Comm. Math. Phys.149, 175-193 (1992). Zbl0758.60070MR1182416
- [S-Z3] D. Stroock, B. Zegarlinski. The equivalence of the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition. Comm. Math. Phys.144, 303-323 (1992). Zbl0745.60104MR1152374
- [S-Z4] D. Stroock, B. Zegarlinski. On the ergodic properties of Glauber dynamics. J. Stat. Phys.81, 1007-1019 (1995). Zbl1081.60562MR1361304
- [Wa] F.-Y. Wang. Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Probab. Theor. Relat. Fields109, 417-424 (1997). Zbl0887.35012MR1481127
- [Yo1] N. Yoshida. The log-Sobolev inequality for weakly coupled lattice fields. Probab. Theor. Relat. Field115, 1-40 (1999). Zbl0948.60095MR1715549
- [Yo2] N. Yoshida. Application of log-Sobolev inequality to the stochastic dynamics of unbounded spin systems on the lattice. J. Funct. Anal.173, 74-102 (2000). Zbl1040.82047MR1760279
- [Yo3] N. Yoshida. The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice (1999). Ann. Inst. H. Poincaré, to appear. Zbl0992.60089MR1819124
- [Ze1] B. Zegarlinski. The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice. Comm. Math. Phys.175, 401-432 (1996). Zbl0844.46050MR1370101
- [Ze2] B. Zegarlinski. Isoperimetry for Gibbs measures (1999).http://www-sv.cict.fr/lsp/Ledoux/
Citations in EuDML Documents
top- Pietro Caputo, Paolo Dai Pra, Gustavo Posta, Convex entropy decay via the Bochner–Bakry–Emery approach
- Lorenzo Bertini, Nicoletta Cancrini, Filippo Cesi, The spectral gap for a Glauber-type dynamics in a continuous gas
- Liming Wu, Estimate of spectral gap for continuous gas
- Natalie Grunewald, Felix Otto, Cédric Villani, Maria G. Westdickenberg, A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit
- Pierre-André Zitt, Functional inequalities and uniqueness of the Gibbs measure — from log-Sobolev to Poincaré
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.