The quasi topology associated with a countably subadditive set function
Annales de l'institut Fourier (1971)
- Volume: 21, Issue: 1, page 123-169
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFuglede, Bent. "The quasi topology associated with a countably subadditive set function." Annales de l'institut Fourier 21.1 (1971): 123-169. <http://eudml.org/doc/74024>.
@article{Fuglede1971,
abstract = {This is a general study of an increasing, countably subadditive set function, called a capacity, and defined on the subsets of a topological space $X$. The principal aim is the study of the “quasi-topological” properties of subsets of $X$, or of numerical functions on $X$, with respect to such a capacity $C$. Analogues are obtained to various important properties of the fine topology in potential theory, notably the quasi Lindelöf principle (Doob), the existence of a fine support (Getoor), and the theorem on capacity for decreasing families of sets (Brelot). This analogy becomes an actual identity if a certain compatibility is assumed betweeh the capacity $C$ and a new homology (called “fine”) on $X$. Sufficient conditions are obtained with a convex cone of lower semicontinuous functions on $X$.},
author = {Fuglede, Bent},
journal = {Annales de l'institut Fourier},
keywords = {topology; capacity; fine topology},
language = {eng},
number = {1},
pages = {123-169},
publisher = {Association des Annales de l'Institut Fourier},
title = {The quasi topology associated with a countably subadditive set function},
url = {http://eudml.org/doc/74024},
volume = {21},
year = {1971},
}
TY - JOUR
AU - Fuglede, Bent
TI - The quasi topology associated with a countably subadditive set function
JO - Annales de l'institut Fourier
PY - 1971
PB - Association des Annales de l'Institut Fourier
VL - 21
IS - 1
SP - 123
EP - 169
AB - This is a general study of an increasing, countably subadditive set function, called a capacity, and defined on the subsets of a topological space $X$. The principal aim is the study of the “quasi-topological” properties of subsets of $X$, or of numerical functions on $X$, with respect to such a capacity $C$. Analogues are obtained to various important properties of the fine topology in potential theory, notably the quasi Lindelöf principle (Doob), the existence of a fine support (Getoor), and the theorem on capacity for decreasing families of sets (Brelot). This analogy becomes an actual identity if a certain compatibility is assumed betweeh the capacity $C$ and a new homology (called “fine”) on $X$. Sufficient conditions are obtained with a convex cone of lower semicontinuous functions on $X$.
LA - eng
KW - topology; capacity; fine topology
UR - http://eudml.org/doc/74024
ER -
References
top- [1] M. BRELOT, Eléments de la théorie classique du potentiel. Les cours de Sorbonne. C.D.U., Paris (4e édit. 1969).
- [2] M. BRELOT, Introduction axiomatique de l'effilement, Annali di Mat. 57 (1962), 77-96. Zbl0119.08902MR25 #3187
- [3] M. BRELOT, Axiomatique des fonctions harmoniques. Séminaire de mathématiques supérieures, Montréal (1966). Zbl0148.10401
- [4] M. BRELOT, Capacity and balayage for decreasing sets. Symposium on Statistics and Probability, Berkeley (1965). Zbl0314.60056
- [5] M. BRELOT, Recherches axiomatiques sur un théorème de Choquet concernant l'effilement, Nagoya Math. Journal 30 (1967), 39-46. Zbl0156.12302MR35 #5650
- [6] M. BRELOT, On topologies and boundaries in potential theory. (Lectures in Bombay, 1966), Lecture Notes in Math., n° 175. Berlin (1970). Zbl0222.31014
- [7] H. CARTAN, Théorie générale du balayage en potentiel newtonien, Ann. Univ. Grenoble 22 (1946), 221-280. Zbl0061.22701MR8,581e
- [8] G. CHOQUET, Theory of capacities, Ann. Inst. Fourier 5 (1953), 131-295. Zbl0064.35101MR18,295g
- [9] G. CHOQUET, Forme abstraite du théorème de capacitabilité, Ann. Inst. Fourier 9 (1959), 83-89. Zbl0093.29701MR22 #3692b
- [10] G. CHOQUET, Sur les points d'effilement d'un ensemble, Ann. Inst. Fourier 9 (1959), 91-101. Zbl0093.29702MR22 #3692c
- [11] G. CHOQUET, Démonstration non probabiliste d'un théorème de Getoor, Ann. Inst. Fourier 15, fasc. 2 (1965), 409-414. Zbl0141.30501MR33 #5929
- [12] J. L. DOOB, Applications to analysis of a topological definition of smallness of a set, Bull. Amer. Math. Soc. 72 (1966), 579-600. Zbl0142.09001MR34 #3514
- [13] B. FUGLEDE, Le théorème du minimax et la théorie fine du potentiel, Ann. Inst. Fourier 15, fasc. 1 (1965), 65-88. Zbl0128.33103MR32 #7781
- [14] B. FUGLEDE, Esquisse d'une théorie axiomatique de l'effilement et de la capacité, C.R. Acad. Sci. Paris 261, (1965), 3272-3274. Zbl0192.20401MR32 #7782
- [15] B. FUGLEDE, Quasi topology and fine topology. Sém. Brelot-Choquet-Deny : Théorie du potentiel, 10 (1965-1966), n° 12. Zbl0164.14002
- [16] B. FUGLEDE, Applications du théorème minimax à l'étude de diverses capacités, C.R. Acad. Sci. Paris 266 (1968), 921-923. Zbl0159.40801MR45 #5395
- [17] B. FUGLEDE, Propriétés de connexion en topologie fine. Prépublication, Copenhague (1969).
- [18] R.K. GETOOR, Additive functionals of a Markov process. (Lectures), Hamburg (1964). Zbl0212.20301
- [19] C. GOFFMAN, C.J. NEUGEBAUER and T. NISHIURA, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497-505. Zbl0101.15502MR25 #1254
- [20] J. RIDDER, Über approximativ stetigen Funktionen, Fund. Math. 13 (1929), 201-209. JFM55.0145.01
- [21] S. SAKS, Theory of the Integral, Warsaw (1937).
- [22] A. IONESCU TULCEA and C. IONESCU TULCEA, Topics in the Theory of Lifting, Erg. Math. 48 (1969). Zbl0179.46303MR43 #2185
- [23] R.E. ZINK, On semicontinuous functions and Baire functions, Trans. Amer. Math. Soc. 117 (1965), 1-9. Zbl0143.27703MR30 #216
Citations in EuDML Documents
top- Ivan Netuka, Luděk Zajíček, Functions continuous in the fine topology for the heat equation
- Gianni Dal Maso, -convergence and -capacities
- Lars-Inge Hedberg, Thomas H. Wolff, Thin sets in nonlinear potential theory
- David R. Adams, John L. Lewis, Fine and quasi connectedness in nonlinear potential theory
- Jan Malý, Pointwise estimates of nonnegative subsolutions of quasilinear elliptic equations at irregular boundary points
- Juha Heinonen, Terro Kilpeläinen, Olli Martio, Fine topology and quasilinear elliptic equations
- Enrico Vitali, Convergence of unilateral convex sets in higher order Sobolev spaces
- Jaroslav Lukeš, Luděk Zajíček, When finely continuous functions are of the first class of Baire
- Oldřich John, Jan Malý, Jana Stará, Nowhere continuous solutions to elliptic systems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.