Thin sets in nonlinear potential theory

Lars-Inge Hedberg; Thomas H. Wolff

Annales de l'institut Fourier (1983)

  • Volume: 33, Issue: 4, page 161-187
  • ISSN: 0373-0956

Abstract

top
Let L α q ( R D ) , α > 0 , 1 < q < , denote the space of Bessel potentials f = G α * g , g L q , with norm f α , q = g q . For α integer L α q can be identified with the Sobolev space H α , q .One can associate a potential theory to these spaces much in the same way as classical potential theory is associated to the space H 1 ; 2 , and a considerable part of the theory was carried over to this more general context around 1970. There were difficulties extending the theory of thin sets, however. By means of a new inequality, which characterizes the positive cone in the space dual to L α q , we fill this gap. We show that there is a “good” definition of thin sets, such that the Kellogg and Choquet properties hold, and such that there is a Wiener criterion for certain nonlinear potentials.As a consequence of the Kellogg property the “spectral synthesis theorem” for H α - q , previously proved by one of the authors for q > 2 - α / d , extends to q > 1 .

How to cite

top

Hedberg, Lars-Inge, and Wolff, Thomas H.. "Thin sets in nonlinear potential theory." Annales de l'institut Fourier 33.4 (1983): 161-187. <http://eudml.org/doc/74604>.

@article{Hedberg1983,
abstract = {Let $L^q_\alpha (R^D),~\alpha &gt;0,\, 1&lt; q&lt; \infty $, denote the space of Bessel potentials $f=G_\alpha * g$, $g\in L^q$, with norm $\Vert f\Vert _\{\alpha ,q\}=\Vert g\Vert _q$. For $\alpha $ integer $L^q_\alpha $ can be identified with the Sobolev space $H^\{\alpha ,q\}$.One can associate a potential theory to these spaces much in the same way as classical potential theory is associated to the space $H^\{1;2\}$, and a considerable part of the theory was carried over to this more general context around 1970. There were difficulties extending the theory of thin sets, however. By means of a new inequality, which characterizes the positive cone in the space dual to $L^q_\alpha $, we fill this gap. We show that there is a “good” definition of thin sets, such that the Kellogg and Choquet properties hold, and such that there is a Wiener criterion for certain nonlinear potentials.As a consequence of the Kellogg property the “spectral synthesis theorem” for $H^\{\alpha -q\}$, previously proved by one of the authors for $q&gt;2-\alpha /d$, extends to $q&gt;1$.},
author = {Hedberg, Lars-Inge, Wolff, Thomas H.},
journal = {Annales de l'institut Fourier},
keywords = {thin sets; Kellogg and Choquet properties; Wiener criterion; nonlinear potentials},
language = {eng},
number = {4},
pages = {161-187},
publisher = {Association des Annales de l'Institut Fourier},
title = {Thin sets in nonlinear potential theory},
url = {http://eudml.org/doc/74604},
volume = {33},
year = {1983},
}

TY - JOUR
AU - Hedberg, Lars-Inge
AU - Wolff, Thomas H.
TI - Thin sets in nonlinear potential theory
JO - Annales de l'institut Fourier
PY - 1983
PB - Association des Annales de l'Institut Fourier
VL - 33
IS - 4
SP - 161
EP - 187
AB - Let $L^q_\alpha (R^D),~\alpha &gt;0,\, 1&lt; q&lt; \infty $, denote the space of Bessel potentials $f=G_\alpha * g$, $g\in L^q$, with norm $\Vert f\Vert _{\alpha ,q}=\Vert g\Vert _q$. For $\alpha $ integer $L^q_\alpha $ can be identified with the Sobolev space $H^{\alpha ,q}$.One can associate a potential theory to these spaces much in the same way as classical potential theory is associated to the space $H^{1;2}$, and a considerable part of the theory was carried over to this more general context around 1970. There were difficulties extending the theory of thin sets, however. By means of a new inequality, which characterizes the positive cone in the space dual to $L^q_\alpha $, we fill this gap. We show that there is a “good” definition of thin sets, such that the Kellogg and Choquet properties hold, and such that there is a Wiener criterion for certain nonlinear potentials.As a consequence of the Kellogg property the “spectral synthesis theorem” for $H^{\alpha -q}$, previously proved by one of the authors for $q&gt;2-\alpha /d$, extends to $q&gt;1$.
LA - eng
KW - thin sets; Kellogg and Choquet properties; Wiener criterion; nonlinear potentials
UR - http://eudml.org/doc/74604
ER -

References

top
  1. [1] D. R. ADAMS and L. I. HEDBERG, Inclusion relations among fine topologies in non-linear potential theory, Indiana Univ. Math. J., to appear. Zbl0545.31011
  2. [2] D. R. ADAMS and N. G. MEYERS, Thinness and Wiener criteria for non-linear potentials, Indiana Univ. Math. J., 22 (1972), 169-197. Zbl0244.31012MR47 #5272
  3. [3] T. BAGBY, Quasi topologies and rational approximation, J. Funct. Anal., 10 (1972), 259-268. Zbl0266.30024MR50 #7535
  4. [4] A. S. BESICOVITCH, A general form of the covering principle and relative differentiation of additive functions I, II. Proc. Cambridge Philos. Soc., 41 (1945), 103-110, ibid., 42 (1946), 1-10. Zbl0063.00353
  5. [5] M. BRELOT, Sur les ensembles effilés, Bull. Sci. Math., 68 (1944), 12-36. Zbl0028.36201MR7,15e
  6. [6] M. BRELOT, On topologies and boundaries in potential theory, Lecture Notes in Math., 175, Springer Verlag 1971. Zbl0222.31014MR43 #7654
  7. [7] A. P. CALDERÓN, Lebesgue spaces of differentiable functions and distributions, Proc. Symp. Pure Math., 4 (1961), 33-49. Zbl0195.41103MR26 #603
  8. [8] L. CARLESON, Selected problems on exceptional sets, Van Nostrand, 1967. Zbl0189.10903MR37 #1576
  9. [9] G. CHOQUET, Sur les points d'effilement d'un ensemble. Application à l'étude de la capacité, Ann. Inst. Fourier, Grenoble, 9 (1959), 91-101. Zbl0093.29702MR22 #3692c
  10. [10] G. CHOQUET, Convergence vague et suites de potentiels newtoniens, Bull. Sci. Math., 99 (1975), 157-164. Zbl0313.31020MR55 #3280
  11. [11] J. A. CLARKSON, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396-414. Zbl0015.35604MR1501880JFM62.0460.04
  12. [12] O. FROSTMAN, Les points irréguliers dans la théorie du potentiel et le critère de Wiener, Kungl. Fysiogr. Sällsk. i Lund Förh., 9-2 (1939), 1-10. Zbl0023.04501JFM65.0415.05
  13. [13] B. FUGLEDE, Quasi topology and fine topology, Séminaire de Théorie du Potentiel, 10 (1965-1966), no. 12. Zbl0164.14002
  14. [14] B. FUGLEDE, The quasi topology associated with a countably additive set function, Ann. Inst. Fourier, Grenoble, 21-1 (1971), 123-169. Zbl0197.19401
  15. [15] K. HANSSON, Imbedding theorems of Sobolev type in potential theory, Math. Scand., 45 (1979), 77-102. Zbl0437.31009MR81j:31007
  16. [16] V. P. HAVIN, Approximation in the mean by analytic functions, Dokl. Akad. Nauk SSSR, 178 (1968), 1025-1028. Zbl0182.40201MR37 #429
  17. [17] L. I. HEDBERG, Non-linear potentials and approximation in the mean by analytic functions, Math. Z., 129 (1972), 299-319. Zbl0236.31010MR48 #6430
  18. [18] L. I. HEDBERG, Two approximation problems in function spaces, Ark. Mat., 16 (1978), 51-81. Zbl0399.46023MR80c:46042
  19. [19] L. I. HEDBERG, Spectral synthesis and stability in Sobolev spaces, in Euclidean harmonic analysis (Proc., Univ. of Maryland, 1979), Lecture Notes in Math., 779, 73-103, Springer Verlag 1980. Zbl0469.31003
  20. [20] L. I. HEDBERG, Spectral synthesis in Sobolev spaces, and uniqueness of solutions of the Dirichlet problem, Acta Math., 147 (1981), 237-264. Zbl0504.35018MR83g:46032
  21. [21] L. I. HEDBERG, On the Dirichlet problem for higher order equations, in Conference on Harmonic Analysis in Honor of Antoni Zygmund (Chicago 1981), 620-633. Wadsworth, 1983. Zbl0532.35026
  22. [22] T. KOLSRUD, A uniqueness theorem for higher order elliptic partial differential equations, Math. Scand., 51 (1982), 323-332. Zbl0491.35045MR84f:35040
  23. [23] N. S. LANDKOF, Foundations of modern potential theory, Nauka, Moscow 1966. (English translation, Springer-Verlag 1972). Zbl0253.31001
  24. [24] V. G. MAZ'JA and V. P. HAVIN, Non-linear potential theory, Uspehi Mat. Nauk, 27-6 (1972), 67-138. Zbl0247.31010
  25. [25] N. G. MEYERS, Continuity properties of potentials, Duke Math. J., 42 (1975), 157-166. Zbl0334.31004MR51 #3477
  26. [26] E. M. STEIN, Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970. Zbl0207.13501MR44 #7280

Citations in EuDML Documents

top
  1. J. H. Michael, William P. Ziemer, The Wiener criterion and quasilinear uniformly elliptic equations
  2. Jan Malý, The area formula for W 1 , n -mappings
  3. L. Boccardo, D. Giachetti, F. Murat, A generalization of a theorem of H. Brezis & F. E. Browder and applications to some unilateral problems
  4. David R. Adams, John L. Lewis, Fine and quasi connectedness in nonlinear potential theory
  5. Tero Kilpeläinen, Jan Malý, Degenerate elliptic equations with measure data and nonlinear potentials
  6. Jan Malý, Pointwise estimates of nonnegative subsolutions of quasilinear elliptic equations at irregular boundary points
  7. Juha Heinonen, Terro Kilpeläinen, Olli Martio, Fine topology and quasilinear elliptic equations
  8. Enrico Vitali, Convergence of unilateral convex sets in higher order Sobolev spaces
  9. Verbitsky, Igor E., Superlinear equations, potential theory and weighted norm inequalities
  10. Fabrice Bethuel, Giandomenico Orlandi, Didier Smets, Improved estimates for the Ginzburg-Landau equation : the elliptic case

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.