Partial regularity of free discontinuity sets, II

Luigi Ambrosio; Nicola Fusco[1]; Diego Pallara

  • [1] Dipartimento di Matematica e Applicazioni Monte Sant’Angelo, via Cintia, 80126 Napoli, Italy;

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 24, Issue: 1, page 39-62
  • ISSN: 0391-173X

How to cite

top

Ambrosio, Luigi, Fusco, Nicola, and Pallara, Diego. "Partial regularity of free discontinuity sets, II." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24.1 (1997): 39-62. <http://eudml.org/doc/84255>.

@article{Ambrosio1997,
affiliation = {Dipartimento di Matematica e Applicazioni Monte Sant’Angelo, via Cintia, 80126 Napoli, Italy;},
author = {Ambrosio, Luigi, Fusco, Nicola, Pallara, Diego},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {spaces SBV; Mumford-Shah functional; image segmentations; free discontinuity problems; quasiminimizers; decay estimates; spaces of special functions of bounded variation},
language = {eng},
number = {1},
pages = {39-62},
publisher = {Scuola normale superiore},
title = {Partial regularity of free discontinuity sets, II},
url = {http://eudml.org/doc/84255},
volume = {24},
year = {1997},
}

TY - JOUR
AU - Ambrosio, Luigi
AU - Fusco, Nicola
AU - Pallara, Diego
TI - Partial regularity of free discontinuity sets, II
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 24
IS - 1
SP - 39
EP - 62
LA - eng
KW - spaces SBV; Mumford-Shah functional; image segmentations; free discontinuity problems; quasiminimizers; decay estimates; spaces of special functions of bounded variation
UR - http://eudml.org/doc/84255
ER -

References

top
  1. [1] L. Ambrosio, A compactness theorem for a new class of functions of bounded variation, Boll. Un. Mat. Ital.B3 (1989), 857-881. Zbl0767.49001MR1032614
  2. [2] L. Ambrosio, Existence theory for a new class of variational problems, Arch. Rational Mech. Anal.111 (1990), 291-322. Zbl0711.49064MR1068374
  3. [3] L. Ambrosio, Variational problems in SBV, Acta App. Math.17 (1989), 1-40. Zbl0697.49004MR1029833
  4. [4] L. Ambrosio, A new proof of SBV compactness theorem, Calc. Var.3 (1995), 127-137. Zbl0837.49011MR1384840
  5. [5] L. Ambrosio - D. Pallara, Partial regularity of free discontinuity sets I, Ann. Scuola Norm. Sup. Pisa Cl. Sci. ???. Zbl0896.49023
  6. [6] A. Blake - A. Zisserman, Visual Reconstruction, M.I.T. Press, 1987. MR919733
  7. [7] A. Bonnet, On the regularity of edges in the Mumford-Shah model for image segmentation, Ann. Inst. H. Poincaré, to appear. 
  8. [8] M. Carriero - A. Leaci, Existence theorem for a Dirichlet problem with free discontinuity set, Nonlinear Analysis TMA15 (1990), 661-677. Zbl0713.49003MR1073957
  9. [9] M. Carriero - A. Leaci - D. Pallara - E. Pascali, Euler Conditions for a Minimum Problem with Free Discontinuity Set, Preprint Dip. di Matematica, 8Lecce, 1988. 
  10. [10] M. Carriero - A. Leaci - F. Tomarelli, Plastic free discontinuities and special bounded hessian, C.R. Acad. Sci. Paris Sér. I Math.314 (1992), 595-600. Zbl0794.49011MR1158743
  11. [11] G. Dal Maso - J.M. Morel - S. Solimini, A variational method in image segmentation: existence and approximation results, Acta Math.168 (1992), 89-151. Zbl0772.49006MR1149865
  12. [12] G. David - S. Semmes, On the singular set of minimizers of the Mumford-Shah functional, J. Math. Pures Appl. to appear. Zbl0853.49010
  13. [13] G. David, C1-arcs for the minimizers of the Mumford- Shah functional, SIAM J. Appl. Math.56 (1996), 783-888. Zbl0870.49020MR1389754
  14. [14] E. De Giorgi, Free Discontinuity Problems in Calculus of Variations, in: Frontiers in pure and applied Mathematics, a collection of papers dedicated to J.L. Lions on the occasion of his 60th birthday, R. Dautray ed., North Holland, 1991. Zbl0758.49002MR1110593
  15. [15] E. De Giorgi - L. Ambrosio, Un nuovo tipo di funzionale del Calcolo delle Variazioni, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 82 (1988), 199-210. Zbl0715.49014MR1152641
  16. [16] E. De Giorgi - M. Carriero - A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Rational Mech. Anal.108 (1989), 195-218. Zbl0682.49002MR1012174
  17. [17] E. Giusti, Minimal surfaces and functions with bounded variation, Birkhäuser, Boston, 1984. Zbl0545.49018MR775682
  18. [18] F.H. Lin, Variational problems with free interfaces, Calc. Var.1 (1993), 149-168. Zbl0794.49038MR1261721
  19. [19] J.M. Morel - S. Solimini, Variational models in image segmentation, Birkhäuser, Bostom, 1994. Zbl0827.68111
  20. [20] D. Mumford - J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math.17 (1989), 577-685. Zbl0691.49036MR997568
  21. [21] L. Simon, Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, Canberra, 1983. Zbl0546.49019MR756417
  22. [22] W.P. Ziemer, Weakly differentiable functions, Springer Verlag, Berlin, 1989. Zbl0692.46022MR1014685

Citations in EuDML Documents

top
  1. Carlo-Romano Grisanti, On a functional depending on curvature and edges
  2. Francesco Maddalena, Sergio Solimini, Regularity properties of free discontinuity sets
  3. Séverine Rigot, Big pieces of C 1 , α -graphs for minimizers of the Mumford-Shah functional
  4. Michele Carriero, Antonio Leaci, Franco Tomarelli, Strong minimizers of Blake & Zisserman functional
  5. Antoine Lemenant, On the homogeneity of global minimizers for the Mumford-Shah functional when K is a smooth cone
  6. F. A. Lops, F Maddalena, S Solimini, Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities
  7. Antoine Lemenant, Un théorème de régularité pour les minimiseurs de Mumford-Shah dans 3
  8. Guy David, Jean-Christophe Léger, Monotonicity and separation for the Mumford–Shah problem
  9. Irene Fonseca, Nicola Fusco, Regularity results for anisotropic image segmentation models
  10. Francesco Maddalena, Sergio Solimini, Concentration and flatness properties of the singular set of bisected balls

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.