The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 14 of 14

Showing per page

Order by Relevance | Title | Year of publication

Cardinal characteristics of the ideal of Haar null sets

Taras O. Banakh — 2004

Commentationes Mathematicae Universitatis Carolinae

We calculate the cardinal characteristics of the σ -ideal 𝒩 ( G ) of Haar null subsets of a Polish non-locally compact group G with invariant metric and show that cov ( 𝒩 ( G ) ) 𝔟 max { 𝔡 , non ( 𝒩 ) } non ( 𝒩 ( G ) ) cof ( 𝒩 ( G ) ) > min { 𝔡 , non ( 𝒩 ) } . If G = n 0 G n is the product of abelian locally compact groups G n , then add ( 𝒩 ( G ) ) = add ( 𝒩 ) , cov ( 𝒩 ( G ) ) = min { 𝔟 , cov ( 𝒩 ) } , non ( 𝒩 ( G ) ) = max { 𝔡 , non ( 𝒩 ) } and cof ( 𝒩 ( G ) ) cof ( 𝒩 ) , where 𝒩 is the ideal of Lebesgue null subsets on the real line. Martin Axiom implies that cof ( 𝒩 ( G ) ) > 2 0 and hence G contains a Haar null subset that cannot be enlarged to a Borel or projective Haar null subset of G . This gives a negative (consistent) answer to a question of...

Openly factorizable spaces and compact extensions of topological semigroups

Taras O. BanakhSvetlana Dimitrova — 2010

Commentationes Mathematicae Universitatis Carolinae

We prove that the semigroup operation of a topological semigroup S extends to a continuous semigroup operation on its Stone-Čech compactification β S provided S is a pseudocompact openly factorizable space, which means that each map f : S Y to a second countable space Y can be written as the composition f = g p of an open map p : X Z onto a second countable space Z and a map g : Z Y . We present a spectral characterization of openly factorizable spaces and establish some properties of such spaces.

Universal meager F σ -sets in locally compact manifolds

Taras O. BanakhDušan Repovš — 2013

Commentationes Mathematicae Universitatis Carolinae

In each manifold M modeled on a finite or infinite dimensional cube [ 0 , 1 ] n , n ω , we construct a meager F σ -subset X M which is universal meager in the sense that for each meager subset A M there is a homeomorphism h : M M such that h ( A ) X . We also prove that any two universal meager F σ -sets in M are ambiently homeomorphic.

Corrigendum to the paper “The universal Banach space with a K -suppression unconditional basis”

Taras O. BanakhJoanna Garbulińska-Wegrzyn — 2020

Commentationes Mathematicae Universitatis Carolinae

We observe that the notion of an almost 𝔉ℑ K -universal based Banach space, introduced in our earlier paper [1]: Banakh T., Garbulińska-Wegrzyn J., The universal Banach space with a K -suppression unconditional basis, Comment. Math. Univ. Carolin. 59 (2018), no. 2, 195–206, is vacuous for K = 1 . Taking into account this discovery, we reformulate Theorem 5.2 from [1] in order to guarantee that the main results of [1] remain valid.

On linear functorial operators extending pseudometrics

Taras O. BanakhOleg Pikhurko — 1997

Commentationes Mathematicae Universitatis Carolinae

For a functor F I d on the category of metrizable compacta, we introduce a conception of a linear functorial operator T = { T X : P c ( X ) P c ( F X ) } extending (for each X ) pseudometrics from X onto F X X (briefly LFOEP for F ). The main result states that the functor S P G n of G -symmetric power admits a LFOEP if and only if the action of G on { 1 , , n } has a one-point orbit. Since both the hyperspace functor exp and the probability measure functor P contain S P 2 as a subfunctor, this implies that both exp and P do not admit LFOEP.

On r -reflexive Banach spaces

Iryna BanakhTaras O. BanakhElena Riss — 2009

Commentationes Mathematicae Universitatis Carolinae

A Banach space X is called if for any cover 𝒰 of X by weakly open sets there is a finite subfamily 𝒱 𝒰 covering some ball of radius 1 centered at a point x with x r . We prove that an infinite-dimensional separable Banach space X is -reflexive ( r -reflexive for some r ) if and only if each ε -net for X has an accumulation point (resp., contains a non-trivial convergent sequence) in the weak topology of X . We show that the quasireflexive James space J is r -reflexive for no r . We do not know if each -reflexive...

On meager function spaces, network character and meager convergence in topological spaces

Taras O. BanakhVolodymyr MykhaylyukLubomyr Zdomsky — 2011

Commentationes Mathematicae Universitatis Carolinae

For a non-isolated point x of a topological space X let nw χ ( x ) be the smallest cardinality of a family 𝒩 of infinite subsets of X such that each neighborhood O ( x ) X of x contains a set N 𝒩 . We prove that (a) each infinite compact Hausdorff space X contains a non-isolated point x with nw χ ( x ) = 0 ; (b) for each point x X with nw χ ( x ) = 0 there is an injective sequence ( x n ) n ω in X that -converges to x for some meager filter on ω ; (c) if a functionally Hausdorff space X contains an -convergent injective sequence for some meager filter...

On character of points in the Higson corona of a metric space

Taras O. BanakhOstap ChervakLubomyr Zdomskyy — 2013

Commentationes Mathematicae Universitatis Carolinae

We prove that for an unbounded metric space X , the minimal character 𝗆 χ ( X ˇ ) of a point of the Higson corona X ˇ of X is equal to 𝔲 if X has asymptotically isolated balls and to max { 𝔲 , 𝔡 } otherwise. This implies that under 𝔲 < 𝔡 a metric space X of bounded geometry is coarsely equivalent to the Cantor macro-cube 2 < if and only if dim ( X ˇ ) = 0 and 𝗆 χ ( X ˇ ) = 𝔡 . This contrasts with a result of Protasov saying that under CH the coronas of any two asymptotically zero-dimensional unbounded metric separable spaces are homeomorphic.

On continuous self-maps and homeomorphisms of the Golomb space

Taras O. BanakhJerzy MioduszewskiSławomir Turek — 2018

Commentationes Mathematicae Universitatis Carolinae

The Golomb space τ is the set of positive integers endowed with the topology τ generated by the base consisting of arithmetic progressions { a + b n : n 0 } with coprime a , b . We prove that the Golomb space τ has continuum many continuous self-maps, contains a countable disjoint family of infinite closed connected subsets, the set Π of prime numbers is a dense metrizable subspace of τ , and each homeomorphism h of τ has the following properties: h ( 1 ) = 1 , h ( Π ) = Π , Π h ( x ) = h ( Π x ) , and h ( x ) = h ( x ) for all x . Here x : = { x n : n } and Π x denotes the set of prime divisors...

The Golomb space is topologically rigid

Taras O. BanakhDario SpiritoSławomir Turek — 2021

Commentationes Mathematicae Universitatis Carolinae

The Golomb space τ is the set of positive integers endowed with the topology τ generated by the base consisting of arithmetic progressions { a + b n : n 0 } with coprime a , b . We prove that the Golomb space τ is topologically rigid in the sense that its homeomorphism group is trivial. This resolves a problem posed by T. Banakh at Mathoverflow in 2017.

Page 1

Download Results (CSV)