The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
It is shown that if is of bounded variation in the sense of Hardy-Krause on , then is of bounded variation there. As a result, we obtain a simple proof of Kurzweil’s multidimensional integration by parts formula.
In this paper we show that the measure generated by the indefinite Henstock-Kurzweil integral is regular. As a result, we give a shorter proof of the measure-theoretic characterization of the Henstock-Kurzweil integral.
Several new integrability theorems are proved for multiple cosine or sine series.
Applying a simple integration by parts formula for the Henstock-Kurzweil integral, we obtain a simple proof of the Riesz representation theorem for the space of Henstock-Kurzweil integrable functions. Consequently, we give sufficient conditions for the existence and equality of two iterated Henstock-Kurzweil integrals.
We establish two new norm convergence theorems for Henstock-Kurzweil integrals. In particular, we provide a unified approach for extending several results of R. P. Boas and P. Heywood from one-dimensional to multidimensional trigonometric series.
We use an elementary method to prove that each function is a multiplier for the -integral.
It is shown that a Banach-valued Henstock-Kurzweil integrable function on an -dimensional compact interval is McShane integrable on a portion of the interval. As a consequence, there exist a non-Perron integrable function and a continuous function such that
for all .
Some full characterizations of the strong McShane integral are obtained.
Using generalized absolute continuity, we characterize additive interval functions which are indefinite Henstock-Kurzweil integrals in the Euclidean space.
We study a generalization of the classical Henstock-Kurzweil integral, known as the strong -integral, introduced by Jarník and Kurzweil. Let be the space of all strongly -integrable functions on a multidimensional compact interval , equipped with the Alexiewicz norm . We show that each element in the dual space of can be represented as a strong -integral. Consequently, we prove that is strongly -integrable on for each strongly -integrable function if and only if is almost everywhere...
Download Results (CSV)