Carlitz a défini sur une fonction et une série formelle , analogues respectivement à la fonction de Riemann et au réel . Yu a montré, en utilisant les modules de Drinfeld, que est transcendant pour tout non divisible par . Nous donnons ici une preuve «automatique» de la transcendance de pour , en utilisant le théorème de Christol, Kamae, Mendès France et Rauzy.
The aim of this paper is to evaluate the growth order
of the complexity function (in rectangles)
for two-dimensional sequences
generated by a linear cellular automaton
with coefficients in , and polynomial initial condition.
We prove that the complexity function
is quadratic when is a prime and that it increases with respect
to the number of distinct prime factors of .
Nous donnons une représentation géométrique des suites doubles uniformément récurrentes de fonction de complexité rectangulaire . Nous montrons que ces suites codent l’action d’une -action définie par deux rotations irrationnelles sur le cercle unité. La preuve repose sur une étude des suites doubles dont les lignes sont des suite sturmiennes de même langage.
Rauzy fractals are compact sets with fractal boundary that can be associated with any unimodular Pisot irreducible substitution. These fractals can be defined as the Hausdorff limit of a sequence of compact sets, where each set is a renormalized projection of a finite union of faces of unit cubes. We exploit this combinatorial definition to prove the connectedness of the Rauzy fractal associated with any finite product of three-letter Arnoux–Rauzy substitutions.
We introduce two-dimensional substitutions generating two-dimensional sequences related
to discrete approximations of irrational planes. These two-dimensional substitutions are
produced by the classical Jacobi-Perron continued fraction algorithm, by the way of
induction of a -action by rotations on the circle. This gives a new geometric
interpretation of the Jacobi-Perron algorithm, as a map operating on the parameter space
of -actions by rotations.
In this paper, we extend to automorphisms of free groups some results and constructions that classically hold for morphisms of the free monoid, i.e., the so-called substitutions. A geometric representation of the attractive lamination of a class of automorphisms of the free group (irreducible with irreducible powers () automorphisms) is given in the case where the dilation coefficient of the automorphism is a unit Pisot number. The shift map associated with the attractive symbolic lamination is,...
This survey aims at giving a consistent presentation of numeration from a dynamical viewpoint: we focus on numeration systems, their associated compactification, and dynamical systems that can be naturally defined on them. The exposition is unified by the fibred numeration system concept. Many examples are discussed. Various numerations on rational integers, real or complex numbers are presented with special attention paid to -numeration and its generalisations, abstract numeration systems and...
Sturmian words are infinite words that have exactly
factors of length for every positive integer .
A Sturmian word is also defined
as a coding over a two-letter alphabet of the orbit
of point under the action
of the irrational rotation (mod 1).
A substitution fixes a Sturmian word if and only if it is invertible.
The main object of the present paper is to investigate Rauzy fractals
associated with two-letter invertible substitutions.
As an application, we give an alternative
geometric...
Download Results (CSV)