The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Sur un exemple effectif d'une fonction non représentable analytiquement”

Démonstration d'un théorème de M. Baire sur les fonctions représentables analytiquement

Wacław Sierpiński (1920)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer sans l'aide des nombres transfinis et sans utiliser la théorie des ensembles mesurables B (ensembles de Borel) le suivant théorème de Baire: Toute fonction représentable analytiquement est ponctuellement discontinue sur tout ensemble parfait, quand on néglige les ensembles de I -e catégorie par rapport à cet ensemble.

Sur un problème concernant les fonctions continues

Stefan Mazurkiewicz, Wacław Sierpiński (1924)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de montrer la solution au problème suivante de Banach: Problème: P étant un ensemble plan fermé, ou, plus généralement, mesurable (B), quel est l'ensemble N(P) de tous les nombres réels b, tels que la droite y=b rencontre l'ensemble P en une infinité non dénombrable de points ?

Sur les suites transfinies convergentes de fonctions de Baire

Wacław Sierpiński (1920)

Fundamenta Mathematicae

Similarity:

Définition: Nous disons qu'une suite transfinie (du type Ω) de fonctions de variable réelle f_1(x),f_2(x),...,f_ω(x),f_{ω + 1}(x),...,f_ξ(x),... (ξ<Ω) (1) a pour limite la fonction f(x), si, pour tout x réel, la suite des nombres (1) a pour limite le nombre f(x). Le but de cette note est de démontrer le théorème suivant: Si la suite (1) est une suite convergente de fonction continues, tous ses termes sont égaux à partir d'une certaine place.

Sur une condition pour qu'un continu soit une courbe jordanienne

Wacław Sierpiński (1920)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer le theoreme suivant: Pour qu'en continu C (situé dans un espace euclidien à m dimensions) soit une courbe jordanienne, il faut et il suffit que, pour tout ϵ > 0, il soit une somme d'un nombre fini de continus de diamètre < ϵ.

Sur les fonctions approximativement discontinues

Stefan Kempisty (1924)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer: Théorème: Pour toute fonction f(x) d'une variable réelle l'ensemble E[L^+(x)<l^-(x)] est au plus denombrable.

Sur une propriété des fonctions de M. Hamel

Wacław Sierpiński (1924)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer le théorème suivant suggeré par Monsieur Nikodym: Théorème: Une fonction discontinue d'une variable réelle f(x) satisfaisant à l'équation fonctionnelle f(x+y) = f(x) + f(y), ne peut être majorée par aucune fonction mesurable.

Sur un problème de M. Lebesgue

Wacław Sierpiński (1920)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer que pour qu'une fonction de deux variables x, y soit de classe α = 0 dans le plan (x,y), il suffit qu'elle soit de classe 0 de Baire sur toute droite x=const. et sur toute courbe (continue) y=f(x). En plus si cette propriété était exacte pour α=2, on aurait l'inégalité 2^{א_0} > א_1.

Une démonstration du théorème sur la structure des ensembles de points

Wacław Sierpiński (1920)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer le théorème suivant: Tout ensemble de points P (situé dans l'espace euclidien à m dimensions) se décompose en une somme de deux ensembles P=C+D dont l'ensemble C (s'il n'est pas vide) est clairsemé et effectivement énumérable, et l'ensemble D (s'il n'est pas vide) est dense en soi.

Contribution à la topologie des ensembles dénombrables

Stefan Mazurkiewicz, Wacław Sierpiński (1920)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de déterminer la puissance de deux classes de types topologiques dénombrables: de celle des types dénombrables fermés et de celle des types clairsemés. Mazurkiewicz et Sierpiński démontrent que la puissance de la première de ces classes est א_1 et que la seconde classe est de puissance du continu.

Une remarque sur la condition de Baire

Wacław Sierpiński (1924)

Fundamenta Mathematicae

Similarity:

On dit qu'une fonction f(x) satisfait à la condition de Baire relativement à un ensemble parfait P, si elle est continue sur P quand on néglige un ensemble de première catégorie par rapport à P. Dans ce cas il existe toujours une infinité des ensembles E de première catégorie par rapport à P, tels que f(x) est continue sur P-E. Le but de cette note est de démontrer que parmi ces ensembles il existe toujours le plus petit.

Sur les fonctions convexes mesurables

Wacław Sierpiński (1920)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer le théorème suivant: Toute fonction mesurable et convexe dans l'intervalle <a,b> est continue à l'intérieur de cet intervalle.

Démonstration d'un théorème sur les fonctions additives d'ensemble

Wacław Sierpiński (1924)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer: Théorème: Soit une fonction d'ensembles F, additive et définie sur la famille additive d'ensembles T. Tout ensemble E_0 de la famille T se divise en deux ensembles P et N, tels que P ∈ T, N ∈ T et 1. f(E) ≥ 0 pour E ⊂ P, E ∈ T, 2. f(E) ≤ 0 pour E ⊂ N, E ∈ T.

Sur les rapports entre l’existence des intégrales 0 1 f ( x , y ) d x , 0 1 f ( x , y ) d y et 0 1 d x 0 1 f ( x , y ) d y

Wacław Sierpiński (1920)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer que la réponse au problème (posée par Stanisław Ruziewicz) suivant: L'existence (pour une function bornée f(x,y), définie dans le carré 0 ≤ x ≤ 1, 0 ≤ y ≤ 1) des intégrales au sens de Lebesgue: ∫_0^1f(x,y)dx pour 0 ≤ y ≤ 1 ∫_0^1f(x,y)dy pour 0 ≤ x ≤ 1 entraîne-t-elle toujours l'existence de l'intégrale (au sens de Lebesgue) ∫_0^1 dx∫_0^1f(x,y)dy ? est négative, si l'on admet l'hypothèse du continu.