Displaying similar documents to “Sur les fonctions à lieu singulier de dimension 1”

Classification analytique de structures de Poisson

Philipp Lohrmann (2009)

Bulletin de la Société Mathématique de France

Similarity:

Notre étude porte sur une catégorie de structures de Poisson singulières holomorphes au voisinage de 0 n et admettant une forme normale formelle polynomiale i.e. un nombre fini d’invariants formels. Les séries normalisantes sont divergentes en général. On montre l’existence de transformations normalisantes holomorphes sur des domaines sectoriels de la forme a < arg x R < b , où x R est un monôme associé au problème. Il suit une classification analytique.

Incompressibilité des feuilles de germes de feuilletages holomorphes singuliers

David Marín, Jean-François Mattei (2008)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Nous considérons un germe de feuilletage holomorphe singulier non-dicritique défini sur une boule fermée 𝔹 ¯ 2 , satisfaisant des hypothèses génériques, de courbe de séparatrice S . Nous démontrons l’existence d’un voisinage ouvert U de S dans 𝔹 ¯ tel que, pour toute feuille L de | ( U S ) , l’inclusion naturelle ı : L U S induit un monomorphisme ı * : π 1 ( L ) π 1 ( U S ) au niveau du groupe fondamental. Pour cela, nous introduisons la notion géométrique de « connexité feuilletée » avec laquelle nous réinterprétons la notion d’incompressibilité....

Sur certains pseudogroupes de biholomorphismes locaux de ( n , 0 )

Michel Belliart (2001)

Bulletin de la Société Mathématique de France

Similarity:

On montre que si Γ est un pseudogroupe de transformations locales holomorphes de n en zéro contenant deux éléments “en position générale” et proches de l’identité, alors : 1) L’action de Γ sur le fibré des jets d’ordre infini sur un petit voisinage épointé de 0 est minimale (c’est-à-dire que si z 0 , z 1 et si φ : z 0 z 1 est un germe de biholomorphisme alors il existe une suite γ n Γ qui converge vers  φ uniformément au voisinage de z 0 ). 2) Γ ne préserve aucune structure géométrique au voisinage de 0 (c’est...

Image réciproque du squelette par un morphisme entre espaces de Berkovich de même dimension

Antoine Ducros (2003)

Bulletin de la Société Mathématique de France

Similarity:

Cet article concerne les espaces analytiques Soit  k un corps complet pour une valeur absolue ultramétrique et soit 𝔛 un schéma formel au-dessus de la boule unité k 0 de k . Si 𝔛 est pluristable (ce qui signifie essentiellement que les singularités de sa fibre spéciale sont « raisonnables » ) alors sa fibre générique  𝔛 η se rétracte sur l’un de ses sous-ensembles fermés noté S ( 𝔛 ) (c’est lede 𝔛 ) qui possède une structure naturelle d’espace linéaire par morceaux. Si 𝔜 𝔛 est un morphisme étale entre...

Courbes multiples primitives et déformations de courbes lisses

Jean-Marc Drézet (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Une est une variété de Cohen-Macaulay Y telle que C = Y r e d soit une courbe lisse irréductible, et que Y puisse être localement plongée dans une surface lisse. Soient T une courbe lisse et t 0 T . Soient 𝒟 T une famille plate de courbes lisses irréductibles, et C = 𝒟 t 0 . Alors le n -ième voisinage infinitésimal de C dans 𝒟 est une courbe multiple primitive de multiplicité n , et le faisceau d’idéaux C de C dans C n est le fibré trivial sur la courbe induite C n - 1 de multiplicité n - 1 . Réciproquement, on montre que...

Dynamique et formes normales d’équations différentielles implicites

Julien Aurouet (2014)

Annales de l’institut Fourier

Similarity:

Dans cet article on cherche à comprendre la dynamique locale d’équations différentielles implicites de la forme F ( x , y , d y ) = 0 , où F est un germe de fonction sur 𝕂 n × 𝕂 × 𝕂 n * (où 𝕂 = ou ), au voisinage d’un point singulier. Pour cela on utilise la relation intime entre les systèmes implicites et les champs liouvilliens. La classification par transformation de contact des équations implicites provient de la classification symplectique des champs liouvilliens. On utilise alors toute la théorie des formes normales...

Tangences homoclines stables pour des ensembles hyperboliques de grande dimension fractale

Carlos Gustavo Moreira, Jean-Christophe Yoccoz (2010)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Soit F 0 un difféomorphisme d’une surface possédant deux fers à cheval Λ , Λ ' tels que W s Λ et W u Λ ' aient en un point q une tangence quadratique isolée. Nous montrons que, si la somme des dimensions transverses de W s Λ et W u Λ ' est strictement plus grande que 1, les difféomorphismes voisins de F 0 tels que W s Λ et W u Λ ' soient stablement tangents au voisinage de q forment une partie de densité inférieure strictement positive en F 0 .

Codimension B-W d’un idéal à droite non nul de A 1 ( )

Mathias Konan Kouakou (2005)

Bulletin de la Société Mathématique de France

Similarity:

Soit A 1 ( ) la première algèbre de Weyl sur . La codimension B-W d’un idéal à droite non nul I de A 1 ( ) a été introduite par Yuri Berest et George Wilson. Nous montrons d’une part que cette codimension est invariante par la relation de Stafford : si x Q 1 = Frac ( A 1 ( ) ) , le corps de fractions de A 1 ( ) , et si σ Aut ( A 1 ( ) ) , le groupe des -automorphismes de A 1 ( ) , sont tels que J = x σ ( I ) soit un idéal à droite de A 1 ( ) , alors codim I = codim x σ ( I ) . Nous relions d’autre part la codimension d’un idéal I à la codimension de Gail Letzter-Makar Limanov, de End ( I ) , l’anneau...

Groupe de Brauer non ramifié d’espaces homogènes de tores

Jean-Louis Colliot-Thélène (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Soient k un corps et X une k -variété projective et lisse. Si X est géométriquement rationnelle, on dispose d’une application injective du quotient de groupes de Brauer Br ( X ) / Br ( k ) dans le premier groupe de cohomologie galoisienne du réseau défini par le groupe de Picard géométrique de X . Dans cette note on donne des cas où cette application est toujours surjective. Pour les espaces homogènes de certains tores algébriques, on donne des générateurs explicites dans Br ( X ) . On applique cela à l’étude du...

La filtration canonique des points de torsion des groupes p -divisibles

Laurent Fargues (2011)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Étant donnés un entier n 1 et un groupe de Barsotti-Tate tronqué d’échelon  n et de dimension d sur un anneau de valuation d’inégales caractéristiques, nous donnons une borne explicite sur son invariant de Hasse qui implique que sa filtration de Harder-Narasimhan possède un sous-groupe libre de rang d . Lorsque n = 1 nous redémontrons également le théorème d’Abbes-Mokrane ([120]) et de Tian ([164]) par des méthodes locales. On applique cela aux familles p -adiques de tels objets et en particulier...

Résonances de Rayleigh en dimension 2

Didier Gamblin (2004)

Bulletin de la Société Mathématique de France

Similarity:

Nous étudions les résonances de Rayleigh créées par un obstacle strictement convexe à bord analytique en dimension 2. Nous montrons qu’il existe exactement deux suites de résonances ( z k , + ) et ( z k , - ) convergeant exponentiellement vite vers l’axe réel dans un voisinage polynomial de l’axe réel, et exponentiellement proches d’une suite de quasimodes réels. De plus, k - 1 z k , ± est un symbole analytique d’ordre 0 en la variable k - 1 dont on donne le premier terme du développement. Nous construisons pour cela des...