Displaying similar documents to “On the structure of sequentially Cohen-Macaulay bigraded modules”

On the invariance of certain types of generalized Cohen-Macaulay modules under Foxby equivalence

Kosar Abolfath Beigi, Kamran Divaani-Aazar, Massoud Tousi (2022)

Czechoslovak Mathematical Journal

Similarity:

Let R be a local ring and C a semidualizing module of R . We investigate the behavior of certain classes of generalized Cohen-Macaulay R -modules under the Foxby equivalence between the Auslander and Bass classes with respect to C . In particular, we show that generalized Cohen-Macaulay R -modules are invariant under this equivalence and if M is a finitely generated R -module in the Auslander class with respect to C such that C R M is surjective Buchsbaum, then M is also surjective Buchsbaum. ...

n - gr -coherent rings and Gorenstein graded modules

Mostafa Amini, Driss Bennis, Soumia Mamdouhi (2022)

Czechoslovak Mathematical Journal

Similarity:

Let R be a graded ring and n 1 be an integer. We introduce and study the notions of Gorenstein n -FP-gr-injective and Gorenstein n -gr-flat modules by using the notion of special finitely presented graded modules. On n -gr-coherent rings, we investigate the relationships between Gorenstein n -FP-gr-injective and Gorenstein n -gr-flat modules. Among other results, we prove that any graded module in R -gr (or gr- R ) admits a Gorenstein n -FP-gr-injective (or Gorenstein n -gr-flat) cover and preenvelope,...

n -strongly Gorenstein graded modules

Zenghui Gao, Jie Peng (2019)

Czechoslovak Mathematical Journal

Similarity:

Let R be a graded ring and n 1 an integer. We introduce and study n -strongly Gorenstein gr-projective, gr-injective and gr-flat modules. Some examples are given to show that n -strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules need not be m -strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules whenever n > m . Many properties of the n -strongly Gorenstein gr-injective and gr-flat modules are discussed, some known results are generalized....

(Strongly) Gorenstein injective modules over upper triangular matrix Artin algebras

Chao Wang, Xiao Yan Yang (2017)

Czechoslovak Mathematical Journal

Similarity:

Let Λ = A M 0 B be an Artin algebra. In view of the characterization of finitely generated Gorenstein injective Λ -modules under the condition that M is a cocompatible ( A , B ) -bimodule, we establish a recollement of the stable category Ginj ( Λ ) ¯ . We also determine all strongly complete injective resolutions and all strongly Gorenstein injective modules over Λ .

Stratified modules over an extension algebra

Erzsébet Lukács, András Magyar (2018)

Czechoslovak Mathematical Journal

Similarity:

Let A be a standard Koszul standardly stratified algebra and X an A -module. The paper investigates conditions which imply that the module Ext A * ( X ) over the Yoneda extension algebra A * is filtered by standard modules. In particular, we prove that the Yoneda extension algebra of A is also standardly stratified. This is a generalization of similar results on quasi-hereditary and on graded standardly stratified algebras.

Relative tilting modules with respect to a semidualizing module

Maryam Salimi (2019)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative Noetherian ring, and let C be a semidualizing R -module. The notion of C -tilting R -modules is introduced as the relative setting of the notion of tilting R -modules with respect to C . Some properties of tilting and C -tilting modules and the relations between them are mentioned. It is shown that every finitely generated C -tilting R -module is C -projective. Finally, we investigate some kernel subcategories related to C -tilting modules.

Local cohomology, cofiniteness and homological functors of modules

Kamal Bahmanpour (2022)

Czechoslovak Mathematical Journal

Similarity:

Let I be an ideal of a commutative Noetherian ring R . It is shown that the R -modules H I j ( M ) are I -cofinite for all finitely generated R -modules M and all j 0 if and only if the R -modules Ext R i ( N , H I j ( M ) ) and Tor i R ( N , H I j ( M ) ) are I -cofinite for all finitely generated R -modules M , N and all integers i , j 0 .

Recollements induced by good (co)silting dg-modules

Rongmin Zhu, Jiaqun Wei (2023)

Czechoslovak Mathematical Journal

Similarity:

Let U be a dg- A -module, B the endomorphism dg-algebra of U . We know that if U is a good silting object, then there exist a dg-algebra C and a recollement among the derived categories 𝐃 ( C , d ) of C , 𝐃 ( B , d ) of B and 𝐃 ( A , d ) of A . We investigate the condition under which the induced dg-algebra C is weak nonpositive. In order to deal with both silting and cosilting dg-modules consistently, the notion of weak silting dg-modules is introduced. Thus, similar results for good cosilting dg-modules are obtained....

Some bounds for the annihilators of local cohomology and Ext modules

Ali Fathi (2022)

Czechoslovak Mathematical Journal

Similarity:

Let 𝔞 be an ideal of a commutative Noetherian ring R and t be a nonnegative integer. Let M and N be two finitely generated R -modules. In certain cases, we give some bounds under inclusion for the annihilators of Ext R t ( M , N ) and H 𝔞 t ( M ) in terms of minimal primary decomposition of the zero submodule of M , which are independent of the choice of minimal primary decomposition. Then, by using those bounds, we compute the annihilators of local cohomology and Ext modules in certain cases.

On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals

Thiago H. Freitas, Victor H. Jorge Pérez (2019)

Czechoslovak Mathematical Journal

Similarity:

Let 𝔞 , I , J be ideals of a Noetherian local ring ( R , 𝔪 , k ) . Let M and N be finitely generated R -modules. We give a generalized version of the Duality Theorem for Cohen-Macaulay rings using local cohomology defined by a pair of ideals. We study the behavior of the endomorphism rings of H I , J t ( M ) and D ( H I , J t ( M ) ) , where t is the smallest integer such that the local cohomology with respect to a pair of ideals is nonzero and D ( - ) : = Hom R ( - , E R ( k ) ) is the Matlis dual functor. We show that if R is a d -dimensional complete Cohen-Macaulay...

Some results on G C -flat dimension of modules

Ramalingam Udhayakumar, Intan Muchtadi-Alamsyah, Chelliah Selvaraj (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we study some properties of G C -flat R -modules, where C is a semidualizing module over a commutative ring R and we investigate the relation between the G C -yoke with the C -yoke of a module as well as the relation between the G C -flat resolution and the flat resolution of a module over G F -closed rings. We also obtain a criterion for computing the G C -flat dimension of modules.

Cofiniteness and finiteness of local cohomology modules over regular local rings

Jafar A'zami, Naser Pourreza (2017)

Czechoslovak Mathematical Journal

Similarity:

Let ( R , 𝔪 ) be a commutative Noetherian regular local ring of dimension d and I be a proper ideal of R such that mAss R ( R / I ) = Assh R ( I ) . It is shown that the R -module H I ht ( I ) ( R ) is I -cofinite if and only if cd ( I , R ) = ht ( I ) . Also we present a sufficient condition under which this condition the R -module H I i ( R ) is finitely generated if and only if it vanishes.

Betti numbers of some circulant graphs

Mohsen Abdi Makvand, Amir Mousivand (2019)

Czechoslovak Mathematical Journal

Similarity:

Let o ( n ) be the greatest odd integer less than or equal to n . In this paper we provide explicit formulae to compute -graded Betti numbers of the circulant graphs C 2 n ( 1 , 2 , 3 , 5 , ... , o ( n ) ) . We do this by showing that this graph is the product (or join) of the cycle C n by itself, and computing Betti numbers of C n * C n . We also discuss whether such a graph (more generally, G * H ) is well-covered, Cohen-Macaulay, sequentially Cohen-Macaulay, Buchsbaum, or S 2 .

On the minimaxness and coatomicness of local cohomology modules

Marzieh Hatamkhani, Hajar Roshan-Shekalgourabi (2022)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative Noetherian ring, I an ideal of R and M an R -module. We wish to investigate the relation between vanishing, finiteness, Artinianness, minimaxness and 𝒞 -minimaxness of local cohomology modules. We show that if M is a minimax R -module, then the local-global principle is valid for minimaxness of local cohomology modules. This implies that if n is a nonnegative integer such that ( H I i ( M ) ) 𝔪 is a minimax R 𝔪 -module for all 𝔪 Max ( R ) and for all i < n , then the set Ass R ( H I n ( M ) ) is finite. Also, if H I i ( M ) is...

Melkersson condition on Serre subcategories

Reza Sazeedeh, Rasul Rasuli (2016)

Colloquium Mathematicae

Similarity:

Let R be a commutative noetherian ring, let be an ideal of R, and let be a subcategory of the category of R-modules. The condition C , defined for R-modules, was introduced by Aghapournahr and Melkersson (2008) in order to study when the local cohomology modules relative to belong to . In this paper, we define and study the class consisting of all modules satisfying C . If and are ideals of R, we get a necessary and sufficient condition for to satisfy C and C simultaneously. We also...