Displaying similar documents to “Minimax nonparametric prediction”

Random ε-nets and embeddings in N

Y. Gordon, A. E. Litvak, A. Pajor, N. Tomczak-Jaegermann (2007)

Studia Mathematica

Similarity:

We show that, given an n-dimensional normed space X, a sequence of N = ( 8 / ε ) 2 n independent random vectors ( X i ) i = 1 N , uniformly distributed in the unit ball of X*, with high probability forms an ε-net for this unit ball. Thus the random linear map Γ : N defined by Γ x = ( x , X i ) i = 1 N embeds X in N with at most 1 + ε norm distortion. In the case X = ℓ₂ⁿ we obtain a random 1+ε-embedding into N with asymptotically best possible relation between N, n, and ε.

Positivity of integrated random walks

Vladislav Vysotsky (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Take a centered random walk S n and consider the sequence of its partial sums A n : = i = 1 n S i . Suppose S 1 is in the domain of normal attraction of an α -stable law with 1 l t ; α 2 . Assuming that S 1 is either right-exponential (i.e. ( S 1 g t ; x | S 1 g t ; 0 ) = e - a x for some a g t ; 0 and all x g t ; 0 ) or right-continuous (skip free), we prove that { A 1 g t ; 0 , , A N g t ; 0 } C α N 1 / ( 2 α ) - 1 / 2 as N , where C α g t ; 0 depends on the distribution of the walk. We also consider a conditional version of this problem and study positivity of integrated discrete bridges.

On uniqueness of distribution of a random variable whose independent copies span a subspace in L p

S. Astashkin, F. Sukochev, D. Zanin (2015)

Studia Mathematica

Similarity:

Let 1 ≤ p < 2 and let L p = L p [ 0 , 1 ] be the classical L p -space of all (classes of) p-integrable functions on [0,1]. It is known that a sequence of independent copies of a mean zero random variable f L p spans in L p a subspace isomorphic to some Orlicz sequence space l M . We give precise connections between M and f and establish conditions under which the distribution of a random variable f L p whose independent copies span l M in L p is essentially unique.

Some limit theorems for m -pairwise negative quadrant dependent random variables

Yongfeng Wu, Jiangyan Peng (2018)

Kybernetika

Similarity:

The authors first establish the Marcinkiewicz-Zygmund inequalities with exponent p ( 1 p 2 ) for m -pairwise negatively quadrant dependent ( m -PNQD) random variables. By means of the inequalities, the authors obtain some limit theorems for arrays of rowwise m -PNQD random variables, which extend and improve the corresponding results in [Y. Meng and Z. Lin (2009)] and [H. S. Sung (2013)]. It is worthy to point out that the open problem of [H. S. Sung, S. Lisawadi, and A. Volodin (2008)] can be...

Asymptotic behavior of a stochastic combustion growth process

Alejandro Ramírez, Vladas Sidoravicius (2004)

Journal of the European Mathematical Society

Similarity:

We study a continuous time growth process on the d -dimensional hypercubic lattice 𝒵 d , which admits a phenomenological interpretation as the combustion reaction A + B 2 A , where A represents heat particles and B inert particles. This process can be described as an interacting particle system in the following way: at time 0 a simple symmetric continuous time random walk of total jump rate one begins to move from the origin of the hypercubic lattice; then, as soon as any random walk visits a site...

On bilinear forms based on the resolvent of large random matrices

Walid Hachem, Philippe Loubaton, Jamal Najim, Pascal Vallet (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Consider a N × n non-centered matrix 𝛴 n with a separable variance profile: 𝛴 n = D n 1 / 2 X n D ˜ n 1 / 2 n + A n . Matrices D n and D ˜ n are non-negative deterministic diagonal, while matrix A n is deterministic, and X n is a random matrix with complex independent and identically distributed random variables, each with mean zero and variance one. Denote by Q n ( z ) the resolvent associated to 𝛴 n 𝛴 n * , i.e. Q n ( z ) = 𝛴 n 𝛴 n * - z I N - 1 . Given two sequences of deterministic vectors ( u n ) and ( v n ) with bounded Euclidean norms, we study the limiting behavior of the random bilinear form:...

Why Jordan algebras are natural in statistics: quadratic regression implies Wishart distributions

G. Letac, J. Wesołowski (2011)

Bulletin de la Société Mathématique de France

Similarity:

If the space 𝒬 of quadratic forms in n is splitted in a direct sum 𝒬 1 ... 𝒬 k and if X and Y are independent random variables of n , assume that there exist a real number a such that E ( X | X + Y ) = a ( X + Y ) and real distinct numbers b 1 , . . . , b k such that E ( q ( X ) | X + Y ) = b i q ( X + Y ) for any q in 𝒬 i . We prove that this happens only when k = 2 , when n can be structured in a Euclidean Jordan algebra and when X and Y have Wishart distributions corresponding to this structure.

Size of the giant component in a random geometric graph

Ghurumuruhan Ganesan (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

In this paper, we study the size of the giant component C G in the random geometric graph G = G ( n , r n , f ) of n nodes independently distributed each according to a certain density f ( · ) in [ 0 , 1 ] 2 satisfying inf x [ 0 , 1 ] 2 f ( x ) g t ; 0 . If c 1 n r n 2 c 2 log n n for some positive constants c 1 , c 2 and n r n 2 as n , we show that the giant component of G contains at least n - o ( n ) nodes with probability at least 1 - e - β n r n 2 for all n and for some positive constant β . We also obtain estimates on the diameter and number of the non-giant components of G .

Comparison between two types of large sample covariance matrices

Guangming Pan (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Let { X i j } , i , j = , be a double array of independent and identically distributed (i.i.d.) real random variables with E X 11 = μ , E | X 11 - μ | 2 = 1 and E | X 11 | 4 l t ; . Consider sample covariance matrices (with/without empirical centering) 𝒮 = 1 n j = 1 n ( 𝐬 j - 𝐬 ¯ ) ( 𝐬 j - 𝐬 ¯ ) T and 𝐒 = 1 n j = 1 n 𝐬 j 𝐬 j T , where 𝐬 ¯ = 1 n j = 1 n 𝐬 j and 𝐬 j = 𝐓 n 1 / 2 ( X 1 j , ... , X p j ) T with ( 𝐓 n 1 / 2 ) 2 = 𝐓 n , non-random symmetric non-negative definite matrix. It is proved that central limit theorems of eigenvalue statistics of 𝒮 and 𝐒 are different as n with p / n approaching a positive constant. Moreover, it is also proved that such a different behavior is not observed in the...

Uniform mixing time for random walk on lamplighter graphs

Júlia Komjáthy, Jason Miller, Yuval Peres (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Suppose that 𝒢 is a finite, connected graph and X is a lazy random walk on 𝒢 . The lamplighter chain X associated with X is the random walk on the wreath product 𝒢 = 𝐙 2 𝒢 , the graph whose vertices consist of pairs ( f ̲ , x ) where f is a labeling of the vertices of 𝒢 by elements of 𝐙 2 = { 0 , 1 } and x is a vertex in 𝒢 . There is an edge between ( f ̲ , x ) and ( g ̲ , y ) in 𝒢 if and only if x is adjacent to y in 𝒢 and f z = g z for all z x , y . In each step, X moves from a configuration ( f ̲ , x ) by updating x to y using the transition rule of X and then...

Giant component and vacant set for random walk on a discrete torus

Itai Benjamini, Alain-Sol Sznitman (2008)

Journal of the European Mathematical Society

Similarity:

We consider random walk on a discrete torus E of side-length N , in sufficiently high dimension d . We investigate the percolative properties of the vacant set corresponding to the collection of sites which have not been visited by the walk up to time u N d . We show that when u is chosen small, as N tends to infinity, there is with overwhelming probability a unique connected component in the vacant set which contains segments of length const log N . Moreover, this connected component occupies a...

Weak convergence of mutually independent X B and X A under weak convergence of X X B - X A

W. Szczotka (2006)

Applicationes Mathematicae

Similarity:

For each n ≥ 1, let v n , k , k 1 and u n , k , k 1 be mutually independent sequences of nonnegative random variables and let each of them consist of mutually independent and identically distributed random variables with means v̅ₙ and u̅̅ₙ, respectively. Let X B ( t ) = ( 1 / c ) j = 1 [ n t ] ( v n , j - v ̅ ) , X A ( t ) = ( 1 / c ) j = 1 [ n t ] ( u n , j - u ̅ ̅ ) , t ≥ 0, and X = X B - X A . The main result gives conditions under which the weak convergence X X , where X is a Lévy process, implies X B X B and X A X A , where X B and X A are mutually independent Lévy processes and X = X B - X A .

Persistence of iterated partial sums

Amir Dembo, Jian Ding, Fuchang Gao (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Let S n ( 2 ) denote the iterated partial sums. That is, S n ( 2 ) = S 1 + S 2 + + S n , where S i = X 1 + X 2 + + X i . Assuming X 1 , X 2 , ... , X n are integrable, zero-mean, i.i.d. random variables, we show that the persistence probabilities p n ( 2 ) : = max 1 i n S i ( 2 ) l t ; 0 c 𝔼 | S n + 1 | ( n + 1 ) 𝔼 | X 1 | , with c 6 30 (and c = 2 whenever X 1 is symmetric). The converse inequality holds whenever the non-zero min ( - X 1 , 0 ) is bounded or when it has only finite third moment and in addition X 1 is squared integrable. Furthermore, p n ( 2 ) n - 1 / 4 for any non-degenerate squared integrable, i.i.d., zero-mean X i . In contrast, we show that for any 0 l t ; γ l t ; 1 / 4 there exist integrable,...

A continuous mapping theorem for the argmin-set functional with applications to convex stochastic processes

Dietmar Ferger (2021)

Kybernetika

Similarity:

For lower-semicontinuous and convex stochastic processes Z n and nonnegative random variables ϵ n we investigate the pertaining random sets A ( Z n , ϵ n ) of all ϵ n -approximating minimizers of Z n . It is shown that, if the finite dimensional distributions of the Z n converge to some Z and if the ϵ n converge in probability to some constant c , then the A ( Z n , ϵ n ) converge in distribution to A ( Z , c ) in the hyperspace of Vietoris. As a simple corollary we obtain an extension of several argmin-theorems in the literature. In particular,...

On orthogonal series estimation of bounded regression functions

Waldemar Popiński (2001)

Applicationes Mathematicae

Similarity:

The problem of nonparametric estimation of a bounded regression function f L ² ( [ a , b ] d ) , [a,b] ⊂ ℝ, d ≥ 1, using an orthonormal system of functions e k , k=1,2,..., is considered in the case when the observations follow the model Y i = f ( X i ) + η i , i=1,...,n, where X i and η i are i.i.d. copies of independent random variables X and η, respectively, the distribution of X has density ϱ, and η has mean zero and finite variance. The estimators are constructed by proper truncation of the function f ̂ ( x ) = k = 1 N ( n ) c ̂ k e k ( x ) , where the coefficients c ̂ , . . . , c ̂ N ( n ) ...

Soft local times and decoupling of random interlacements

Serguei Popov, Augusto Teixeira (2015)

Journal of the European Mathematical Society

Similarity:

In this paper we establish a decoupling feature of the random interlacement process u d at level u , d 3 . Roughly speaking, we show that observations of u restricted to two disjoint subsets A 1 and A 2 of d are approximately independent, once we add a sprinkling to the process u by slightly increasing the parameter u . Our results differ from previous ones in that we allow the mutual distance between the sets A 1 and A 2 to be much smaller than their diameters. We then provide an important application...

About the generating function of a left bounded integer-valued random variable

Charles Delorme, Jean-Marc Rinkel (2008)

Bulletin de la Société Mathématique de France

Similarity:

We give a relation between the sign of the mean of an integer-valued, left bounded, random variable X and the number of zeros of 1 - Φ ( z ) inside the unit disk, where Φ is the generating function of X , under some mild conditions

Gaussian approximation of Gaussian scale mixtures

Gérard Letac, Hélène Massam (2020)

Kybernetika

Similarity:

For a given positive random variable V > 0 and a given Z N ( 0 , 1 ) independent of V , we compute the scalar t 0 such that the distance in the L 2 ( ) sense between Z V 1 / 2 and Z t 0 is minimal. We also consider the same problem in several dimensions when V is a random positive definite matrix.

The absolute continuity of the invariant measure of random iterated function systems with overlaps

Balázs Bárány, Tomas Persson (2010)

Fundamenta Mathematicae

Similarity:

We consider iterated function systems on the interval with random perturbation. Let Y ε be uniformly distributed in [1-ε,1+ ε] and let f i C 1 + α be contractions with fixpoints a i . We consider the iterated function system Y ε f i + a i ( 1 - Y ε ) i = 1 , where each of the maps is chosen with probability p i . It is shown that the invariant density is in L² and its L² norm does not grow faster than 1/√ε as ε vanishes. The proof relies on defining a piecewise hyperbolic dynamical system on the cube with an SRB-measure whose projection...