Displaying similar documents to “Linear operators on non-locally convex Orlicz spaces”

Uniform convexity and associate spaces

Petteri Harjulehto, Peter Hästö (2018)

Czechoslovak Mathematical Journal

Similarity:

We prove that the associate space of a generalized Orlicz space L φ ( · ) is given by the conjugate modular φ * even without the assumption that simple functions belong to the space. Second, we show that every weakly doubling Φ -function is equivalent to a doubling Φ -function. As a consequence, we conclude that L φ ( · ) is uniformly convex if φ and φ * are weakly doubling.

The space of multipliers and convolutors of Orlicz spaces on a locally compact group

Hasan P. Aghababa, Ibrahim Akbarbaglu, Saeid Maghsoudi (2013)

Studia Mathematica

Similarity:

Let G be a locally compact group, let (φ,ψ) be a complementary pair of Young functions, and let L φ ( G ) and L ψ ( G ) be the corresponding Orlicz spaces. Under some conditions on φ, we will show that for a Banach L φ ( G ) -submodule X of L ψ ( G ) , the multiplier space H o m L φ ( G ) ( L φ ( G ) , X * ) is a dual Banach space with predual L φ ( G ) X : = s p a n ¯ u x : u L φ ( G ) , x X , where the closure is taken in the dual space of H o m L φ ( G ) ( L φ ( G ) , X * ) . We also prove that if φ is a Δ₂-regular N-function, then C v φ ( G ) , the space of convolutors of M φ ( G ) , is identified with the dual of a Banach algebra of functions on G...

Trudinger's inequality for double phase functionals with variable exponents

Fumi-Yuki Maeda, Yoshihiro Mizuta, Takao Ohno, Tetsu Shimomura (2021)

Czechoslovak Mathematical Journal

Similarity:

Our aim in this paper is to establish Trudinger’s inequality on Musielak-Orlicz-Morrey spaces L Φ , κ ( G ) under conditions on Φ which are essentially weaker than those considered in a former paper. As an application and example, we show Trudinger’s inequality for double phase functionals Φ ( x , t ) = t p ( x ) + a ( x ) t q ( x ) , where p ( · ) and q ( · ) satisfy log-Hölder conditions and a ( · ) is nonnegative, bounded and Hölder continuous.

Lower bounds for Jung constants of Orlicz sequence spaces

Z. D. Ren (2010)

Annales Polonici Mathematici

Similarity:

A new lower bound for the Jung constant J C ( l ( Φ ) ) of the Orlicz sequence space l ( Φ ) defined by an N-function Φ is found. It is proved that if l ( Φ ) is reflexive and the function tΦ’(t)/Φ(t) is increasing on ( 0 , Φ - 1 ( 1 ) ] , then J C ( l ( Φ ) ) ( Φ - 1 ( 1 / 2 ) ) / ( Φ - 1 ( 1 ) ) . Examples in Section 3 show that the above estimate is better than in Zhang’s paper (2003) in some cases and that the results given in Yan’s paper (2004) are not accurate.

Normal structure of Lorentz-Orlicz spaces

Pei-Kee Lin, Huiying Sun (1997)

Annales Polonici Mathematici

Similarity:

Let ϕ: ℝ → ℝ₊ ∪ 0 be an even convex continuous function with ϕ(0) = 0 and ϕ(u) > 0 for all u > 0 and let w be a weight function. u₀ and v₀ are defined by u₀ = supu: ϕ is linear on (0,u), v₀=supv: w is constant on (0,v) (where sup∅ = 0). We prove the following theorem. Theorem. Suppose that Λ ϕ , w ( 0 , ) (respectively, Λ ϕ , w ( 0 , 1 ) ) is an order continuous Lorentz-Orlicz space. (1) Λ ϕ , w has normal structure if and only if u₀ = 0 (respectively, v ϕ ( u ) · w < 2 a n d u < ) . (2) Λ ϕ , w has weakly normal structure if and only if 0 v ϕ ( u ) · w < 2 .

Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators

Sibei Yang (2015)

Czechoslovak Mathematical Journal

Similarity:

Let L : = - Δ + V be a Schrödinger operator on n with n 3 and V 0 satisfying Δ - 1 V L ( n ) . Assume that ϕ : n × [ 0 , ) [ 0 , ) is a function such that ϕ ( x , · ) is an Orlicz function, ϕ ( · , t ) 𝔸 ( n ) (the class of uniformly Muckenhoupt weights). Let w be an L -harmonic function on n with 0 < C 1 w C 2 , where C 1 and C 2 are positive constants. In this article, the author proves that the mapping H ϕ , L ( n ) f w f H ϕ ( n ) is an isomorphism from the Musielak-Orlicz-Hardy space associated with L , H ϕ , L ( n ) , to the Musielak-Orlicz-Hardy space H ϕ ( n ) under some assumptions on ϕ . As applications, the author further...

On the inclusions of X Φ spaces

Seyyed Mohammad Tabatabaie, Alireza Bagheri Salec (2023)

Mathematica Bohemica

Similarity:

We give some equivalent conditions (independent from the Young functions) for inclusions between some classes of X Φ spaces, where Φ is a Young function and X is a quasi-Banach function space on a σ -finite measure space ( Ω , 𝒜 , μ ) .

Boundedness of generalized fractional integral operators on Orlicz spaces near L 1 over metric measure spaces

Daiki Hashimoto, Takao Ohno, Tetsu Shimomura (2019)

Czechoslovak Mathematical Journal

Similarity:

We are concerned with the boundedness of generalized fractional integral operators I ρ , τ from Orlicz spaces L Φ ( X ) near L 1 ( X ) to Orlicz spaces L Ψ ( X ) over metric measure spaces equipped with lower Ahlfors Q -regular measures, where Φ is a function of the form Φ ( r ) = r ( r ) and is of log-type. We give a generalization of paper by Mizuta et al. (2010), in the Euclidean setting. We deal with both generalized Riesz potentials and generalized logarithmic potentials.

On uniqueness of distribution of a random variable whose independent copies span a subspace in L p

S. Astashkin, F. Sukochev, D. Zanin (2015)

Studia Mathematica

Similarity:

Let 1 ≤ p < 2 and let L p = L p [ 0 , 1 ] be the classical L p -space of all (classes of) p-integrable functions on [0,1]. It is known that a sequence of independent copies of a mean zero random variable f L p spans in L p a subspace isomorphic to some Orlicz sequence space l M . We give precise connections between M and f and establish conditions under which the distribution of a random variable f L p whose independent copies span l M in L p is essentially unique.

Multiparameter ergodic Cesàro-α averages

A. L. Bernardis, R. Crescimbeni, C. Ferrari Freire (2015)

Colloquium Mathematicae

Similarity:

Net (X,ℱ,ν) be a σ-finite measure space. Associated with k Lamperti operators on L p ( ν ) , T , . . . , T k , n ̅ = ( n , . . . , n k ) k and α ̅ = ( α , . . . , α k ) with 0 < α j 1 , we define the ergodic Cesàro-α̅ averages n ̅ , α ̅ f = 1 / ( j = 1 k A n j α j ) i k = 0 n k i = 0 n j = 1 k A n j - i j α j - 1 T k i k T i f . For these averages we prove the almost everywhere convergence on X and the convergence in the L p ( ν ) norm, when n , . . . , n k independently, for all f L p ( d ν ) with p > 1/α⁎ where α = m i n 1 j k α j . In the limit case p = 1/α⁎, we prove that the averages n ̅ , α ̅ f converge almost everywhere on X for all f in the Orlicz-Lorentz space Λ ( 1 / α , φ m - 1 ) with φ ( t ) = t ( 1 + l o g t ) m . To obtain the result in the limit case we need...

Generalized gradients for locally Lipschitz integral functionals on non- L p -type spaces of measurable functions

Hôǹg Thái Nguyêñ, Dariusz Pączka (2008)

Banach Center Publications

Similarity:

Let (Ω,μ) be a measure space, E be an arbitrary separable Banach space, E * ω * be the dual equipped with the weak* topology, and g:Ω × E → ℝ be a Carathéodory function which is Lipschitz continuous on each ball of E for almost all s ∈ Ω. Put G ( x ) : = Ω g ( s , x ( s ) ) d μ ( s ) . Consider the integral functional G defined on some non- L p -type Banach space X of measurable functions x: Ω → E. We present several general theorems on sufficient conditions under which any element γ ∈ X* of Clarke’s generalized gradient (multivalued...

A note on the commutator of two operators on a locally convex space

Edvard Kramar (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Denote by C the commutator A B - B A of two bounded operators A and B acting on a locally convex topological vector space. If A C - C A = 0 , we show that C is a quasinilpotent operator and we prove that if A C - C A is a compact operator, then C is a Riesz operator.

Weakly compact sets in Orlicz sequence spaces

Siyu Shi, Zhong Rui Shi, Shujun Wu (2021)

Czechoslovak Mathematical Journal

Similarity:

We combine the techniques of sequence spaces and general Orlicz functions that are broader than the classical cases of N -functions. We give three criteria for the weakly compact sets in general Orlicz sequence spaces. One criterion is related to elements of dual spaces. Under the restriction of lim u 0 M ( u ) / u = 0 , we propose two other modular types that are convenient to use because they get rid of elements of dual spaces. Subsequently, by one of these two modular criteria, we see that a set A in Riesz...

Weighted local Orlicz-Hardy spaces with applications to pseudo-differential operators

Dachun Yang, Sibei Yang

Similarity:

Let Φ be a concave function on (0,∞) of strictly critical lower type index p Φ ( 0 , 1 ] and ω A l o c ( ) (the class of local weights introduced by V. S. Rychkov). We introduce the weighted local Orlicz-Hardy space h ω Φ ( ) via the local grand maximal function. Let ρ ( t ) t - 1 / Φ - 1 ( t - 1 ) for all t ∈ (0,∞). We also introduce the BMO-type space b m o ρ , ω ( ) and establish the duality between h ω Φ ( ) and b m o ρ , ω ( ) . Characterizations of h ω Φ ( ) , including the atomic characterization, the local vertical and the local nontangential maximal function characterizations, are...

Coleff-Herrera currents, duality, and noetherian operators

Mats Andersson (2011)

Bulletin de la Société Mathématique de France

Similarity:

Let be a coherent subsheaf of a locally free sheaf 𝒪 ( E 0 ) and suppose that = 𝒪 ( E 0 ) / has pure codimension. Starting with a residue current R obtained from a locally free resolution of we construct a vector-valued Coleff-Herrera current μ with support on the variety associated to such that φ is in if and only if μ φ = 0 . Such a current μ can also be derived algebraically from a fundamental theorem of Roos about the bidualizing functor, and the relation between these two approaches is discussed....

On certain general integral operators of analytic functions

B. A. Frasin (2012)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In this paper, we obtain new sufficient conditions for the operators F α 1 , α 2 , . . . , α n , β ( z ) and G α 1 , α 2 , . . . , α n , β ( z ) to be univalent in the open unit disc 𝒰 , where the functions f 1 , f 2 , . . . , f n belong to the classes S * ( a , b ) and 𝒦 ( a , b ) . The order of convexity for the operators  F α 1 , α 2 , . . . , α n , β ( z ) and G α 1 , α 2 , . . . , α n , β ( z ) is also determined. Furthermore, and for β = 1 , we obtain sufficient conditions for the operators F n ( z ) and G n ( z ) to be in the class 𝒦 ( a , b ) . Several corollaries and consequences of the main results are also considered.

The Young Measure Representation for Weak Cluster Points of Sequences in M-spaces of Measurable Functions

Hôǹg Thái Nguyêñ, Dariusz Pączka (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let ⟨X,Y⟩ be a duality pair of M-spaces X,Y of measurable functions from Ω ⊂ ℝ ⁿ into d . The paper deals with Y-weak cluster points ϕ̅ of the sequence ϕ ( · , z j ( · ) ) in X, where z j : Ω m is measurable for j ∈ ℕ and ϕ : Ω × m d is a Carathéodory function. We obtain general sufficient conditions, under which, for some negligible set A ϕ , the integral I ( ϕ , ν x ) : = m ϕ ( x , λ ) d ν x ( λ ) exists for x Ω A ϕ and ϕ ̅ ( x ) = I ( ϕ , ν x ) on Ω A ϕ , where ν = ν x x Ω is a measurable-dependent family of Radon probability measures on m .

A characterization of reflexive spaces of operators

Janko Bračič, Lina Oliveira (2018)

Czechoslovak Mathematical Journal

Similarity:

We show that for a linear space of operators ( 1 , 2 ) the following assertions are equivalent. (i) is reflexive in the sense of Loginov-Shulman. (ii) There exists an order-preserving map Ψ = ( ψ 1 , ψ 2 ) on a bilattice Bil ( ) of subspaces determined by with P ψ 1 ( P , Q ) and Q ψ 2 ( P , Q ) for any pair ( P , Q ) Bil ( ) , and such that an operator T ( 1 , 2 ) lies in if and only if ψ 2 ( P , Q ) T ψ 1 ( P , Q ) = 0 for all ( P , Q ) Bil ( ) . This extends the Erdos-Power type characterization of weakly closed bimodules over a nest algebra to reflexive spaces.