Displaying similar documents to “Algebraic and topological structures on the set of mean functions and generalization of the AGM mean”

General position properties in fiberwise geometric topology

Taras Banakh, Vesko Valov

Similarity:

General position properties play a crucial role in geometric and infinite-dimensional topologies. Often such properties provide convenient tools for establishing various universality results. One of well-known general position properties is DDⁿ, the property of disjoint n-cells. Each Polish L C n - 1 -space X possessing DDⁿ contains a topological copy of each n-dimensional compact metric space. This fact implies, in particular, the classical Lefschetz-Menger-Nöbeling-Pontryagin-Tolstova embedding...

On generalized square-full numbers in an arithmetic progression

Angkana Sripayap, Pattira Ruengsinsub, Teerapat Srichan (2022)

Czechoslovak Mathematical Journal

Similarity:

Let a and b . Denote by R a , b the set of all integers n > 1 whose canonical prime representation n = p 1 α 1 p 2 α 2 p r α r has all exponents α i ( 1 i r ) being a multiple of a or belonging to the arithmetic progression a t + b , t 0 : = { 0 } . All integers in R a , b are called generalized square-full integers. Using the exponent pair method, an upper bound for character sums over generalized square-full integers is derived. An application on the distribution of generalized square-full integers in an arithmetic progression is given. ...

A problem of Rankin on sets without geometric progressions

Melvyn B. Nathanson, Kevin O'Bryant (2015)

Acta Arithmetica

Similarity:

A geometric progression of length k and integer ratio is a set of numbers of the form a , a r , . . . , a r k - 1 for some positive real number a and integer r ≥ 2. For each integer k ≥ 3, a greedy algorithm is used to construct a strictly decreasing sequence ( a i ) i = 1 of positive real numbers with a₁ = 1 such that the set G ( k ) = i = 1 ( a 2 i , a 2 i - 1 ] contains no geometric progression of length k and integer ratio. Moreover, G ( k ) is a maximal subset of (0,1] that contains no geometric progression of length k and integer ratio. It is also proved that...

On the least almost-prime in arithmetic progressions

Liuying Wu (2024)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒫 2 denote a positive integer with at most 2 prime factors, counted according to multiplicity. For integers a , q such that ( a , q ) = 1 , let 𝒫 2 ( q , a ) denote the least 𝒫 2 in the arithmetic progression { n q + a } n = 1 . It is proved that for sufficiently large q , we have 𝒫 2 ( q , a ) q 1 . 825 . This result constitutes an improvement upon that of J. Li, M. Zhang and Y. Cai (2023), who obtained 𝒫 2 ( q , a ) q 1 . 8345 .

The Golomb space is topologically rigid

Taras O. Banakh, Dario Spirito, Sławomir Turek (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The Golomb space τ is the set of positive integers endowed with the topology τ generated by the base consisting of arithmetic progressions { a + b n : n 0 } with coprime a , b . We prove that the Golomb space τ is topologically rigid in the sense that its homeomorphism group is trivial. This resolves a problem posed by T. Banakh at Mathoverflow in 2017.

On a sum involving the integral part function

Bo Chen (2024)

Czechoslovak Mathematical Journal

Similarity:

Let [ t ] be the integral part of a real number t , and let f be the arithmetic function satisfying some simple condition. We establish a new asymptotical formula for the sum S f ( x ) = n x f ( [ x / n ] ) , which improves the recent result of J. Stucky (2022).

On the characterization of harmonic functions with initial data in Morrey space

Bo Li, Jinxia Li, Bolin Ma, Tianjun Shen (2024)

Czechoslovak Mathematical Journal

Similarity:

Let ( X , d , μ ) be a metric measure space satisfying the doubling condition and an L 2 -Poincaré inequality. Consider the nonnegative operator generalized by a Dirichlet form on X . We will show that a solution u to ( - t 2 + ) u = 0 on X × + satisfies an α -Carleson condition if and only if u can be represented as the Poisson integral of the operator with the trace in the generalized Morrey space L 2 , α ( X ) , where α is a nonnegative function defined on a class of balls in X . This result extends the analogous characterization...

On the derived length of units in group algebra

Dishari Chaudhuri, Anupam Saikia (2017)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group G , K a field of characteristic p 17 and let U be the group of units in K G . We show that if the derived length of U does not exceed 4 , then G must be abelian.

Coprimality of integers in Piatetski-Shapiro sequences

Watcharapon Pimsert, Teerapat Srichan, Pinthira Tangsupphathawat (2023)

Czechoslovak Mathematical Journal

Similarity:

We use the estimation of the number of integers n such that n c belongs to an arithmetic progression to study the coprimality of integers in c = { n c } n , c > 1 , c .

Almost everywhere convergence of convolution powers on compact abelian groups

Jean-Pierre Conze, Michael Lin (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

It is well-known that a probability measure μ on the circle 𝕋 satisfies μ n * f - f d m p 0 for every f L p , every (some) p [ 1 , ) , if and only if | μ ^ ( n ) | l t ; 1 for every non-zero n ( μ is strictly aperiodic). In this paper we study the a.e. convergence of μ n * f for every f L p whenever p g t ; 1 . We prove a necessary and sufficient condition, in terms of the Fourier–Stieltjes coefficients of μ , for the strong sweeping out property (existence of a Borel set B with lim sup μ n * 1 B = 1 a.e. and lim inf μ n * 1 B = 0 a.e.). The results are extended to general compact Abelian groups...

On almost everywhere differentiability of the metric projection on closed sets in l p ( n ) , 2 < p <

Tord Sjödin (2018)

Czechoslovak Mathematical Journal

Similarity:

Let F be a closed subset of n and let P ( x ) denote the metric projection (closest point mapping) of x n onto F in l p -norm. A classical result of Asplund states that P is (Fréchet) differentiable almost everywhere (a.e.) in n in the Euclidean case p = 2 . We consider the case 2 < p < and prove that the i th component P i ( x ) of P ( x ) is differentiable a.e. if P i ( x ) x i and satisfies Hölder condition of order 1 / ( p - 1 ) if P i ( x ) = x i .

An arithmetic Riemann-Roch theorem for pointed stable curves

Gérard Freixas Montplet (2009)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let ( 𝒪 , Σ , F ) be an arithmetic ring of Krull dimension at most 1, 𝒮 = Spec 𝒪 and ( π : 𝒳 𝒮 ; σ 1 , ... , σ n ) an n -pointed stable curve of genus g . Write 𝒰 = 𝒳 j σ j ( 𝒮 ) . The invertible sheaf ω 𝒳 / 𝒮 ( σ 1 + + σ n ) inherits a hermitian structure · hyp from the dual of the hyperbolic metric on the Riemann surface 𝒰 . In this article we prove an arithmetic Riemann-Roch type theorem that computes the arithmetic self-intersection of ω 𝒳 / 𝒮 ( σ 1 + ... + σ n ) hyp . The theorem is applied to modular curves X ( Γ ) , Γ = Γ 0 ( p ) or Γ 1 ( p ) , p 11 prime, with sections given by the cusps. We show Z ' ( Y ( Γ ) , 1 ) e a π b Γ 2 ( 1 / 2 ) c L ( 0 , Γ ) , with p 11 m o d 12 when Γ = Γ 0 ( p ) . Here Z ( Y ( Γ ) , s ) is the Selberg...