The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Compact operators whose adjoints factor through subspaces of l p

Some duality results on bounded approximation properties of pairs

Eve Oja, Silja Treialt (2013)

Studia Mathematica

Similarity:

The main result is as follows. Let X be a Banach space and let Y be a closed subspace of X. Assume that the pair ( X * , Y ) has the λ-bounded approximation property. Then there exists a net ( S α ) of finite-rank operators on X such that S α ( Y ) Y and | | S α | | λ for all α, and ( S α ) and ( S * α ) converge pointwise to the identity operators on X and X*, respectively. This means that the pair (X,Y) has the λ-bounded duality approximation property.

Isomorphic properties in spaces of compact operators

Ioana Ghenciu (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We introduce the definition of p -limited completely continuous operators, 1 p < . The question of whether a space of operators has the property that every p -limited subset is relative compact when the dual of the domain and the codomain have this property is studied using p -limited completely continuous evaluation operators.

2-summing multiplication operators

Dumitru Popa (2013)

Studia Mathematica

Similarity:

Let 1 ≤ p < ∞, = ( X ) n be a sequence of Banach spaces and l p ( ) the coresponding vector valued sequence space. Let = ( X ) n , = ( Y ) n be two sequences of Banach spaces, = ( V ) n , Vₙ: Xₙ → Yₙ, a sequence of bounded linear operators and 1 ≤ p,q < ∞. We define the multiplication operator M : l p ( ) l q ( ) by M ( ( x ) n ) : = ( V ( x ) ) n . We give necessary and sufficient conditions for M to be 2-summing when (p,q) is one of the couples (1,2), (2,1), (2,2), (1,1), (p,1), (p,2), (2,p), (1,p), (p,q); in the last case 1 < p < 2, 1 < q < ∞. ...

The ideal of p-compact operators: a tensor product approach

Daniel Galicer, Silvia Lassalle, Pablo Turco (2012)

Studia Mathematica

Similarity:

We study the space of p-compact operators, p , using the theory of tensor norms and operator ideals. We prove that p is associated to / d p , the left injective associate of the Chevet-Saphar tensor norm d p (which is equal to g p ' ' ). This allows us to relate the theory of p-summing operators to that of p-compact operators. Using the results known for the former class and appropriate hypotheses on E and F we prove that p ( E ; F ) is equal to q ( E ; F ) for a wide range of values of p and q, and show that our results...

Limited p -converging operators and relation with some geometric properties of Banach spaces

Mohammad B. Dehghani, Seyed M. Moshtaghioun (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

By using the concepts of limited p -converging operators between two Banach spaces X and Y , L p -sets and L p -limited sets in Banach spaces, we obtain some characterizations of these concepts relative to some well-known geometric properties of Banach spaces, such as * -Dunford–Pettis property of order p and Pelczyński’s property of order p , 1 p < .

Decompositions for real Banach spaces with small spaces of operators

Manuel González, José M. Herrera (2007)

Studia Mathematica

Similarity:

We consider real Banach spaces X for which the quotient algebra (X)/ℐn(X) is finite-dimensional, where ℐn(X) stands for the ideal of inessential operators on X. We show that these spaces admit a decomposition as a finite direct sum of indecomposable subspaces X i for which ( X i ) / n ( X i ) is isomorphic as a real algebra to either the real numbers ℝ, the complex numbers ℂ, or the quaternion numbers ℍ. Moreover, the set of subspaces X i can be divided into subsets in such a way that if X i and X j are in different...

On hyponormal operators in Krein spaces

Kevin Esmeral, Osmin Ferrer, Jorge Jalk, Boris Lora Castro (2019)

Archivum Mathematicum

Similarity:

In this paper the hyponormal operators on Krein spaces are introduced. We state conditions for the hyponormality of bounded operators focusing, in particular, on those operators T for which there exists a fundamental decomposition 𝕂 = 𝕂 + 𝕂 - of the Krein space 𝕂 with 𝕂 + and 𝕂 - invariant under T .

The Embeddability of c₀ in Spaces of Operators

Ioana Ghenciu, Paul Lewis (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Results of Emmanuele and Drewnowski are used to study the containment of c₀ in the space K w * ( X * , Y ) , as well as the complementation of the space K w * ( X * , Y ) of w*-w compact operators in the space L w * ( X * , Y ) of w*-w operators from X* to Y.

Recurrence and mixing recurrence of multiplication operators

Mohamed Amouch, Hamza Lakrimi (2024)

Mathematica Bohemica

Similarity:

Let X be a Banach space, ( X ) the algebra of bounded linear operators on X and ( J , · J ) an admissible Banach ideal of ( X ) . For T ( X ) , let L J , T and R J , T ( J ) denote the left and right multiplication defined by L J , T ( A ) = T A and R J , T ( A ) = A T , respectively. In this paper, we study the transmission of some concepts related to recurrent operators between T ( X ) , and their elementary operators L J , T and R J , T . In particular, we give necessary and sufficient conditions for L J , T and R J , T to be sequentially recurrent. Furthermore, we prove that L J , T is recurrent...

L -limited-like properties on Banach spaces

Ioana Ghenciu (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study weakly precompact sets and operators. We show that an operator is weakly precompact if and only if its adjoint is pseudo weakly compact. We study Banach spaces with the p - L -limited * and the p -(SR * ) properties and characterize these classes of Banach spaces in terms of p - L -limited * and p -Right * subsets. The p - L -limited * property is studied in some spaces of operators.

Almost demi Dunford--Pettis operators on Banach lattices

Hedi Benkhaled (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We introduce new concept of almost demi Dunford–Pettis operators. Let E be a Banach lattice. An operator T from E into E is said to be almost demi Dunford–Pettis if, for every sequence { x n } in E + such that x n 0 in σ ( E , E ' ) and x n - T x n 0 as n , we have x n 0 as n . In addition, we study some properties of this class of operators and its relationships with others known operators.

A characterization of reflexive spaces of operators

Janko Bračič, Lina Oliveira (2018)

Czechoslovak Mathematical Journal

Similarity:

We show that for a linear space of operators ( 1 , 2 ) the following assertions are equivalent. (i) is reflexive in the sense of Loginov-Shulman. (ii) There exists an order-preserving map Ψ = ( ψ 1 , ψ 2 ) on a bilattice Bil ( ) of subspaces determined by with P ψ 1 ( P , Q ) and Q ψ 2 ( P , Q ) for any pair ( P , Q ) Bil ( ) , and such that an operator T ( 1 , 2 ) lies in if and only if ψ 2 ( P , Q ) T ψ 1 ( P , Q ) = 0 for all ( P , Q ) Bil ( ) . This extends the Erdos-Power type characterization of weakly closed bimodules over a nest algebra to reflexive spaces.

Multiplication operators on L ( L p ) and p -strictly singular operators

William Johnson, Gideon Schechtman (2008)

Journal of the European Mathematical Society

Similarity:

A classification of weakly compact multiplication operators on L ( L p ) , 1<p< , i s g i v e n . T h i s a n s w e r s a q u e s t i o n r a i s e d b y S a k s m a n a n d T y l l i i n 1992 . T h e c l a s s i f i c a t i o n i n v o l v e s t h e c o n c e p t o f p - s t r i c t l y s i n g u l a r o p e r a t o r s , a n d w e a l s o i n v e s t i g a t e t h e s t r u c t u r e o f g e n e r a l p - s t r i c t l y s i n g u l a r o p e r a t o r s o n Lp . T h e m a i n r e s u l t i s t h a t i f a n o p e r a t o r T o n Lp , 1<p<2 , i s p - s t r i c t l y s i n g u l a r a n d T|X i s a n i s o m o r p h i s m f o r s o m e s u b s p a c e X o f Lp , t h e n X e m b e d s i n t o Lr f o r a l l r<2 , b u t X n e e d n o t b e i s o m o r p h i c t o a H i l b e r t s p a c e . It is also shown that if T is convolution by a biased coin on L p of the Cantor group, 1 p < 2 , and T | X is an isomorphism for some reflexive subspace X of L p , then X is isomorphic to a Hilbert space. The case p = 1 answers a question asked by Rosenthal in 1976.

The weak Gelfand-Phillips property in spaces of compact operators

Ioana Ghenciu (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For Banach spaces X and Y , let K w * ( X * , Y ) denote the space of all w * - w continuous compact operators from X * to Y endowed with the operator norm. A Banach space X has the w G P property if every Grothendieck subset of X is relatively weakly compact. In this paper we study Banach spaces with property w G P . We investigate whether the spaces K w * ( X * , Y ) and X ϵ Y have the w G P property, when X and Y have the w G P property.

Essentially Incomparable Banach Spaces of Continuous Functions

Rogério Augusto dos Santos Fajardo (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We construct, under Axiom ♢, a family ( C ( K ξ ) ) ξ < 2 ( 2 ω ) of indecomposable Banach spaces with few operators such that every operator from C ( K ξ ) into C ( K η ) is weakly compact, for all ξ ≠ η. In particular, these spaces are pairwise essentially incomparable. Assuming no additional set-theoretic axiom, we obtain this result with size 2 ω instead of 2 ( 2 ω ) .

Spaces of compact operators on C ( 2 × [ 0 , α ] ) spaces

Elói Medina Galego (2011)

Colloquium Mathematicae

Similarity:

We classify, up to isomorphism, the spaces of compact operators (E,F), where E and F are the Banach spaces of all continuous functions defined on the compact spaces 2 × [ 0 , α ] , the topological products of Cantor cubes 2 and intervals of ordinal numbers [0,α].

A note on Dunford-Pettis like properties and complemented spaces of operators

Ioana Ghenciu (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Equivalent formulations of the Dunford-Pettis property of order p ( D P P p ), 1 < p < , are studied. Let L ( X , Y ) , W ( X , Y ) , K ( X , Y ) , U ( X , Y ) , and C p ( X , Y ) denote respectively the sets of all bounded linear, weakly compact, compact, unconditionally converging, and p -convergent operators from X to Y . Classical results of Kalton are used to study the complementability of the spaces W ( X , Y ) and K ( X , Y ) in the space C p ( X , Y ) , and of C p ( X , Y ) in U ( X , Y ) and L ( X , Y ) .

Simultaneous solutions of operator Sylvester equations

Sang-Gu Lee, Quoc-Phong Vu (2014)

Studia Mathematica

Similarity:

We consider simultaneous solutions of operator Sylvester equations A i X - X B i = C i (1 ≤ i ≤ k), where ( A , . . . , A k ) and ( B , . . . , B k ) are commuting k-tuples of bounded linear operators on Banach spaces and ℱ, respectively, and ( C , . . . , C k ) is a (compatible) k-tuple of bounded linear operators from ℱ to , and prove that if the joint Taylor spectra of ( A , . . . , A k ) and ( B , . . . , B k ) do not intersect, then this system of Sylvester equations has a unique simultaneous solution.

On the range of some elementary operators

Hamza El Mouadine, Abdelkhalek Faouzi, Youssef Bouhafsi (2024)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let L ( H ) denote the algebra of all bounded linear operators on a complex infinite dimensional Hilbert space H . For A , B L ( H ) , the generalized derivation δ A , B and the multiplication operator M A , B are defined on L ( H ) by δ A , B ( X ) = A X - X B and M A , B ( X ) = A X B . In this paper, we give a characterization of bounded operators A and B such that the range of M A , B is closed. We present some sufficient conditions for δ A , B to have closed range. Some related results are also given.

On certain general integral operators of analytic functions

B. A. Frasin (2012)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In this paper, we obtain new sufficient conditions for the operators F α 1 , α 2 , . . . , α n , β ( z ) and G α 1 , α 2 , . . . , α n , β ( z ) to be univalent in the open unit disc 𝒰 , where the functions f 1 , f 2 , . . . , f n belong to the classes S * ( a , b ) and 𝒦 ( a , b ) . The order of convexity for the operators  F α 1 , α 2 , . . . , α n , β ( z ) and G α 1 , α 2 , . . . , α n , β ( z ) is also determined. Furthermore, and for β = 1 , we obtain sufficient conditions for the operators F n ( z ) and G n ( z ) to be in the class 𝒦 ( a , b ) . Several corollaries and consequences of the main results are also considered.