The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Coloring grids”

On g c -colorings of nearly bipartite graphs

Yuzhuo Zhang, Xia Zhang (2018)

Czechoslovak Mathematical Journal

Similarity:

Let G be a simple graph, let d ( v ) denote the degree of a vertex v and let g be a nonnegative integer function on V ( G ) with 0 g ( v ) d ( v ) for each vertex v V ( G ) . A g c -coloring of G is an edge coloring such that for each vertex v V ( G ) and each color c , there are at least g ( v ) edges colored c incident with v . The g c -chromatic index of G , denoted by χ g c ' ( G ) , is the maximum number of colors such that a g c -coloring of G exists. Any simple graph G has the g c -chromatic index equal to δ g ( G ) or δ g ( G ) - 1 , where δ g ( G ) = min v V ( G ) d ( v ) / g ( v ) . A graph G is nearly bipartite,...

On graceful colorings of trees

Sean English, Ping Zhang (2017)

Mathematica Bohemica

Similarity:

A proper coloring c : V ( G ) { 1 , 2 , ... , k } , k 2 of a graph G is called a graceful k -coloring if the induced edge coloring c ' : E ( G ) { 1 , 2 , ... , k - 1 } defined by c ' ( u v ) = | c ( u ) - c ( v ) | for each edge u v of G is also proper. The minimum integer k for which G has a graceful k -coloring is the graceful chromatic number χ g ( G ) . It is known that if T is a tree with maximum degree Δ , then χ g ( T ) 5 3 Δ and this bound is best possible. It is shown for each integer Δ 2 that there is an infinite class of trees T with maximum degree Δ such that χ g ( T ) = 5 3 Δ . In particular, we investigate for each...

On affinity of Peano type functions

Tomasz Słonka (2012)

Colloquium Mathematicae

Similarity:

We show that if n is a positive integer and 2 , then for every positive integer m and for every real constant c > 0 there are functions f , . . . , f n + m : such that ( f , . . . , f n + m ) ( ) = n + m and for every x ∈ ℝⁿ there exists a strictly increasing sequence (i₁,...,iₙ) of numbers from 1,...,n+m and a w ∈ ℤⁿ such that ( f i , . . . , f i ) ( y ) = y + w for y x + ( - c , c ) × n - 1 .

Neighbor sum distinguishing list total coloring of IC-planar graphs without 5-cycles

Donghan Zhang (2022)

Czechoslovak Mathematical Journal

Similarity:

Let G = ( V ( G ) , E ( G ) ) be a simple graph and E G ( v ) denote the set of edges incident with a vertex v . A neighbor sum distinguishing (NSD) total coloring φ of G is a proper total coloring of G such that z E G ( u ) { u } φ ( z ) z E G ( v ) { v } φ ( z ) for each edge u v E ( G ) . Pilśniak and Woźniak asserted in 2015 that each graph with maximum degree Δ admits an NSD total ( Δ + 3 ) -coloring. We prove that the list version of this conjecture holds for any IC-planar graph with Δ 11 but without 5 -cycles by applying the Combinatorial Nullstellensatz.

Coloring Cantor sets and resolvability of pseudocompact spaces

István Juhász, Lajos Soukup, Zoltán Szentmiklóssy (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let us denote by Φ ( λ , μ ) the statement that 𝔹 ( λ ) = D ( λ ) ω , i.e. the Baire space of weight λ , has a coloring with μ colors such that every homeomorphic copy of the Cantor set in 𝔹 ( λ ) picks up all the μ colors. We call a space X π -regular if it is Hausdorff and for every nonempty open set U in X there is a nonempty open set V such that V ¯ U . We recall that a space X is called feebly compact if every locally finite collection of open sets in X is finite. A Tychonov space is pseudocompact if and...

The number of conjugacy classes of elements of the Cremona group of some given finite order

Jérémy Blanc (2007)

Bulletin de la Société Mathématique de France

Similarity:

This note presents the study of the conjugacy classes of elements of some given finite order n in the Cremona group of the plane. In particular, it is shown that the number of conjugacy classes is infinite if n is even, n = 3 or n = 5 , and that it is equal to 3 (respectively 9 ) if n = 9 (respectively if n = 15 ) and to 1 for all remaining odd orders. Some precise representative elements of the classes are given.

Selectors of discrete coarse spaces

Igor Protasov (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given a coarse space ( X , ) with the bornology of bounded subsets, we extend the coarse structure from X × X to the natural coarse structure on ( { } ) × ( { } ) and say that a macro-uniform mapping f : ( { } ) X (or f : [ X ] 2 X ) is a selector (or 2-selector) of ( X , ) if f ( A ) A for each A { } ( A [ X ] 2 , respectively). We prove that a discrete coarse space ( X , ) admits a selector if and only if ( X , ) admits a 2-selector if and only if there exists a linear order “ " on X such that the family of intervals { [ a , b ] : a , b X , a b } is a base for the bornology .

A note on the size Ramsey numbers for matchings versus cycles

Edy Tri Baskoro, Tomáš Vetrík (2021)

Mathematica Bohemica

Similarity:

For graphs G , F 1 , F 2 , we write G ( F 1 , F 2 ) if for every red-blue colouring of the edge set of G we have a red copy of F 1 or a blue copy of F 2 in G . The size Ramsey number r ^ ( F 1 , F 2 ) is the minimum number of edges of a graph G such that G ( F 1 , F 2 ) . Erdős and Faudree proved that for the cycle C n of length n and for t 2 matchings t K 2 , the size Ramsey number r ^ ( t K 2 , C n ) < n + ( 4 t + 3 ) n . We improve their upper bound for t = 2 and t = 3 by showing that r ^ ( 2 K 2 , C n ) n + 2 3 n + 9 for n 12 and r ^ ( 3 K 2 , C n ) < n + 6 n + 9 for n 25 .

Generalized 3-edge-connectivity of Cartesian product graphs

Yuefang Sun (2015)

Czechoslovak Mathematical Journal

Similarity:

The generalized k -connectivity κ k ( G ) of a graph G was introduced by Chartrand et al. in 1984. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized k -edge-connectivity which is defined as λ k ( G ) = min { λ ( S ) : S V ( G ) and | S | = k } , where λ ( S ) denotes the maximum number of pairwise edge-disjoint trees T 1 , T 2 , ... , T in G such that S V ( T i ) for 1 i . In this paper we prove that for any two connected graphs G and H we have λ 3 ( G H ) λ 3 ( G ) + λ 3 ( H ) , where G H is the Cartesian product of G and H . Moreover, the bound is sharp. We also...

The Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths

Halina Bielak, Kinga Dąbrowska (2015)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The Ramsey number R ( G , H ) for a pair of graphs G and H is defined as the smallest integer n such that, for any graph F on n vertices, either F contains G or F ¯ contains H as a subgraph, where F ¯ denotes the complement of F . We study Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths and determine these numbers for some cases. We extend many known results studied in [5, 14, 18, 19, 20]. In particular we count the numbers R ( K 1 + L n , P m ) and R ( K 1 + L n , C m ) for some integers m , n , where L n is...

Theoretical analysis for 1 - 2 minimization with partial support information

Haifeng Li, Leiyan Guo (2025)

Applications of Mathematics

Similarity:

We investigate the recovery of k -sparse signals using the 1 - 2 minimization model with prior support set information. The prior support set information, which is believed to contain the indices of nonzero signal elements, significantly enhances the performance of compressive recovery by improving accuracy, efficiency, reducing complexity, expanding applicability, and enhancing robustness. We assume k -sparse signals 𝐱 with the prior support T which is composed of g true indices and b wrong...

On path-quasar Ramsey numbers

Binlong Li, Bo Ning (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let G 1 and G 2 be two given graphs. The Ramsey number R ( G 1 , G 2 ) is the least integer r such that for every graph G on r vertices, either G contains a G 1 or G ¯ contains a G 2 . Parsons gave a recursive formula to determine the values of R ( P n , K 1 , m ) , where P n is a path on n vertices and K 1 , m is a star on m + 1 vertices. In this note, we study the Ramsey numbers R ( P n , K 1 F m ) , where F m is a linear forest on m vertices. We determine the exact values of R ( P n , K 1 F m ) for the cases m n and m 2 n , and for the case that F m has no odd component. Moreover, we...

Note on improper coloring of 1 -planar graphs

Yanan Chu, Lei Sun, Jun Yue (2019)

Czechoslovak Mathematical Journal

Similarity:

A graph G = ( V , E ) is called improperly ( d 1 , , d k ) -colorable if the vertex set V can be partitioned into subsets V 1 , , V k such that the graph G [ V i ] induced by the vertices of V i has maximum degree at most d i for all 1 i k . In this paper, we mainly study the improper coloring of 1 -planar graphs and show that 1 -planar graphs with girth at least 7 are ( 2 , 0 , 0 , 0 ) -colorable.