Displaying similar documents to “Sufficient conditions for the spectrality of self-affine measures with prime determinant”

Digit sets of integral self-affine tiles with prime determinant

Jian-Lin Li (2006)

Studia Mathematica

Similarity:

Let M ∈ Mₙ(ℤ) be expanding such that |det(M)| = p is a prime and pℤⁿ ⊈ M²(ℤⁿ). Let D ⊂ ℤⁿ be a finite set with |D| = |det(M)|. Suppose the attractor T(M,D) of the iterated function system ϕ d ( x ) = M - 1 ( x + d ) d D has positive Lebesgue measure. We prove that (i) if D ⊈ M(ℤⁿ), then D is a complete set of coset representatives of ℤⁿ/M(ℤⁿ); (ii) if D ⊆ M(ℤⁿ), then there exists a positive integer γ such that D = M γ D , where D₀ is a complete set of coset representatives of ℤⁿ/M(ℤⁿ). This improves the corresponding results...

Self-affine measures and vector-valued representations

Qi-Rong Deng, Xing-Gang He, Ka-Sing Lau (2008)

Studia Mathematica

Similarity:

Let A be a d × d integral expanding matrix and let S j ( x ) = A - 1 ( x + d j ) for some d j d , j = 1,...,m. The iterated function system (IFS) S j j = 1 m generates self-affine measures and scale functions. In general this IFS has overlaps, and it is well known that in many special cases the analysis of such measures or functions is facilitated by expressing them in vector-valued forms with respect to another IFS that satisfies the open set condition. In this paper we prove a general theorem on such representation. The proof...

The natural operators of general affine connections into general affine connections

Jan Kurek, Włodzimierz M. Mikulski (2017)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

We reduce the problem of describing all f m -natural operators  transforming general affine connections on m -manifolds into general affine ones to the known description of all G L ( 𝐑 m ) -invariant maps 𝐑 m * 𝐑 m k 𝐑 m * k 𝐑 m for k = 1 , 3 .

Multidimensional self-affine sets: non-empty interior and the set of uniqueness

Kevin G. Hare, Nikita Sidorov (2015)

Studia Mathematica

Similarity:

Let M be a d × d real contracting matrix. We consider the self-affine iterated function system Mv-u, Mv+u, where u is a cyclic vector. Our main result is as follows: if | d e t M | 2 - 1 / d , then the attractor A M has non-empty interior. We also consider the set M of points in A M which have a unique address. We show that unless M belongs to a very special (non-generic) class, the Hausdorff dimension of M is positive. For this special class the full description of M is given as well. This paper continues our...

On the Hausdorff dimension of certain self-affine sets

Abercrombie Alex G.., Nair R. (2002)

Studia Mathematica

Similarity:

A subset E of ℝⁿ is called self-affine with respect to a collection ϕ₁,...,ϕₜ of affinities if E is the union of the sets ϕ₁(E),...,ϕₜ(E). For S ⊂ ℝⁿ let Φ ( S ) = 1 j t ϕ j ( S ) . If Φ(S) ⊂ S let E Φ ( S ) denote k 0 Φ k ( S ) . For given Φ consisting of contracting “pseudo-dilations” (affinities which preserve the directions of the coordinate axes) and subject to further mild technical restrictions we show that there exist self-affine sets E Φ ( S ) of each Hausdorff dimension between zero and a positive number depending on Φ. We also...

Uniqueness of Cartesian Products of Compact Convex Sets

Zbigniew Lipecki, Viktor Losert, Jiří Spurný (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let X i , i∈ I, and Y j , j∈ J, be compact convex sets whose sets of extreme points are affinely independent and let φ be an affine homeomorphism of i I X i onto j J Y j . We show that there exists a bijection b: I → J such that φ is the product of affine homeomorphisms of X i onto Y b ( i ) , i∈ I.

Self-affine measures that are L p -improving

Kathryn E. Hare (2015)

Colloquium Mathematicae

Similarity:

A measure is called L p -improving if it acts by convolution as a bounded operator from L q to L² for some q < 2. Interesting examples include Riesz product measures, Cantor measures and certain measures on curves. We show that equicontractive, self-similar measures are L p -improving if and only if they satisfy a suitable linear independence property. Certain self-affine measures are also seen to be L p -improving.

On strongly affine extensions of commutative rings

Nabil Zeidi (2020)

Czechoslovak Mathematical Journal

Similarity:

A ring extension R S is said to be strongly affine if each R -subalgebra of S is a finite-type R -algebra. In this paper, several characterizations of strongly affine extensions are given. For instance, we establish that if R is a quasi-local ring of finite dimension, then R S is integrally closed and strongly affine if and only if R S is a Prüfer extension (i.e. ( R , S ) is a normal pair). As a consequence, the equivalence of strongly affine extensions, quasi-Prüfer extensions and INC-pairs is shown....

On Fourier asymptotics of a generalized Cantor measure

Bérenger Akon Kpata, Ibrahim Fofana, Konin Koua (2010)

Colloquium Mathematicae

Similarity:

Let d be a positive integer and μ a generalized Cantor measure satisfying μ = j = 1 m a j μ S j - 1 , where 0 < a j < 1 , j = 1 m a j = 1 , S j = ρ R + b j with 0 < ρ < 1 and R an orthogonal transformation of d . Then ⎧1 < p ≤ 2 ⇒ ⎨ s u p r > 0 r d ( 1 / α ' - 1 / p ' ) ( J x r | μ ̂ ( y ) | p ' d y ) 1 / p ' D ρ - d / α ' , x d , ⎩ p = 2 ⇒ infr≥1 rd(1/α’-1/2) (∫J₀r|μ̂(y)|² dy)1/2 ≥ D₂ρd/α’ , where J x r = i = 1 d ( x i - r / 2 , x i + r / 2 ) , α’ is defined by ρ d / α ' = ( j = 1 m a j p ) 1 / p and the constants D₁ and D₂ depend only on d and p.

Duality of matrix-weighted Besov spaces

Svetlana Roudenko (2004)

Studia Mathematica

Similarity:

We determine the duals of the homogeneous matrix-weighted Besov spaces p α q ( W ) and p α q ( W ) which were previously defined in [5]. If W is a matrix A p weight, then the dual of p α q ( W ) can be identified with p ' - α q ' ( W - p ' / p ) and, similarly, [ p α q ( W ) ] * p ' - α q ' ( W - p ' / p ) . Moreover, for certain W which may not be in the A p class, the duals of p α q ( W ) and p α q ( W ) are determined and expressed in terms of the Besov spaces p ' - α q ' ( A Q - 1 ) and p ' - α q ' ( A Q - 1 ) , which we define in terms of reducing operators A Q Q associated with W. We also develop the basic theory of these reducing operator Besov spaces....

On inhomogeneous self-similar measures and their L q spectra

Przemysław Liszka (2013)

Annales Polonici Mathematici

Similarity:

Let S i : d d for i = 1,..., N be contracting similarities, let ( p , . . . , p N , p ) be a probability vector and let ν be a probability measure on d with compact support. It is well known that there exists a unique inhomogeneous self-similar probability measure μ on d such that μ = i = 1 N p i μ S i - 1 + p ν . We give satisfactory estimates for the lower and upper bounds of the L q spectra of inhomogeneous self-similar measures. The case in which there are a countable number of contracting similarities and probabilities is considered. In particular,...

On minimal spectrum of multiplication lattice modules

Sachin Ballal, Vilas Kharat (2019)

Mathematica Bohemica

Similarity:

We study the minimal prime elements of multiplication lattice module M over a C -lattice L . Moreover, we topologize the spectrum π ( M ) of minimal prime elements of M and study several properties of it. The compactness of π ( M ) is characterized in several ways. Also, we investigate the interplay between the topological properties of π ( M ) and algebraic properties of M .

Bigraphic pairs with a realization containing a split bipartite-graph

Jian Hua Yin, Jia-Yun Li, Jin-Zhi Du, Hai-Yan Li (2019)

Czechoslovak Mathematical Journal

Similarity:

Let K s , t be the complete bipartite graph with partite sets { x 1 , ... , x s } and { y 1 , ... , y t } . A split bipartite-graph on ( s + s ' ) + ( t + t ' ) vertices, denoted by SB s + s ' , t + t ' , is the graph obtained from K s , t by adding s ' + t ' new vertices x s + 1 , ... , x s + s ' , y t + 1 , ... , y t + t ' such that each of x s + 1 , ... , x s + s ' is adjacent to each of y 1 , ... , y t and each of y t + 1 , ... , y t + t ' is adjacent to each of x 1 , ... , x s . Let A and B be nonincreasing lists of nonnegative integers, having lengths m and n , respectively. The pair ( A ; B ) is potentially SB s + s ' , t + t ' -bigraphic if there is a simple bipartite graph containing SB s + s ' , t + t ' (with s + s ' vertices x 1 , ... , x s + s ' in the part of size m ...

The universal tropicalization and the Berkovich analytification

Jeffrey Giansiracusa, Noah Giansiracusa (2022)

Kybernetika

Similarity:

Given an integral scheme X over a non-archimedean valued field k , we construct a universal closed embedding of X into a k -scheme equipped with a model over the field with one element 𝔽 1 (a generalization of a toric variety). An embedding into such an ambient space determines a tropicalization of X by previous work of the authors, and we show that the set-theoretic tropicalization of X with respect to this universal embedding is the Berkovich analytification X an . Moreover, using the scheme-theoretic...

Ramsey numbers for trees II

Zhi-Hong Sun (2021)

Czechoslovak Mathematical Journal

Similarity:

Let r ( G 1 , G 2 ) be the Ramsey number of the two graphs G 1 and G 2 . For n 1 n 2 1 let S ( n 1 , n 2 ) be the double star given by V ( S ( n 1 , n 2 ) ) = { v 0 , v 1 , ... , v n 1 , w 0 , w 1 , ... , w n 2 } and E ( S ( n 1 , n 2 ) ) = { v 0 v 1 , ... , v 0 v n 1 , v 0 w 0 , w 0 w 1 , ... , w 0 w n 2 } . We determine r ( K 1 , m - 1 , S ( n 1 , n 2 ) ) under certain conditions. For n 6 let T n 3 = S ( n - 5 , 3 ) , T n ' ' = ( V , E 2 ) and T n ' ' ' = ( V , E 3 ) , where V = { v 0 , v 1 , ... , v n - 1 } , E 2 = { v 0 v 1 , ... , v 0 v n - 4 , v 1 v n - 3 , v 1 v n - 2 , v 2 v n - 1 } and E 3 = { v 0 v 1 , ... , v 0 v n - 4 , v 1 v n - 3 , v 2 v n - 2 , v 3 v n - 1 } . We also obtain explicit formulas for r ( K 1 , m - 1 , T n ) , r ( T m ' , T n ) ( n m + 3 ) , r ( T n , T n ) , r ( T n ' , T n ) and r ( P n , T n ) , where T n { T n ' ' , T n ' ' ' , T n 3 } , P n is the path on n vertices and T n ' is the unique tree with n vertices and maximal degree n - 2 .

Matrix coefficients, counting and primes for orbits of geometrically finite groups

Amir Mohammadi, Hee Oh (2015)

Journal of the European Mathematical Society

Similarity:

Let G : = SO ( n , 1 ) and Γ ( n - 1 ) / 2 for n = 2 , 3 and when δ > n - 2 for n 4 , we obtain an effective archimedean counting result for a discrete orbit of Γ in a homogeneous space H G where H is the trivial group, a symmetric subgroup or a horospherical subgroup. More precisely, we show that for any effectively well-rounded family { T H G } of compact subsets, there exists η > 0 such that # [ e ] Γ T = ( T ) + O ( ( T ) 1 - η ) for an explicit measure on H G which depends on Γ . We also apply the affine sieve and describe the distribution of almost primes on orbits of Γ in arithmetic...

Poincaré inequalities and rigidity for actions on Banach spaces

Piotr Nowak (2015)

Journal of the European Mathematical Society

Similarity:

The aim of this paper is to extend the framework of the spectral method for proving property (T) to the class of reflexive Banach spaces and present a condition implying that every affine isometric action of a given group G on a reflexive Banach space X has a fixed point. This last property is a strong version of Kazhdan’s property (T) and is equivalent to the fact that H 1 ( G , π ) = 0 for every isometric representation π of G on X . The condition is expressed in terms of p -Poincaré constants and we...

Centroaffine differential geometry and its relations to horizontal submanifolds

Luc Vrancken (2002)

Banach Center Publications

Similarity:

We relate centroaffine immersions f : M n + 1 to horizontal immersions g of Mⁿ into S n + 1 2 n + 1 ( 1 ) or H n 2 n + 1 ( - 1 ) . We also show that f is an equiaffine sphere, i.e. the centroaffine normal is a constant multiple of the Blaschke normal, if and only if g is minimal.

Truncation and Duality Results for Hopf Image Algebras

Teodor Banica (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Associated to an Hadamard matrix H M N ( ) is the spectral measure μ ∈ [0,N] of the corresponding Hopf image algebra, A = C(G) with G S N . We study a certain family of discrete measures μ r [ 0 , N ] , coming from the idempotent state theory of G, which converge in Cesàro limit to μ. Our main result is a duality formula of type 0 N ( x / N ) p d μ r ( x ) = 0 N ( x / N ) r d ν p ( x ) , where μ r , ν r are the truncations of the spectral measures μ,ν associated to H , H t . We also prove, using these truncations μ r , ν r , that for any deformed Fourier matrix H = F M Q F N we have μ = ν.

Finiteness problems on Nash manifolds and Nash sets

José F. Fernando, José Manuel Gamboa, Jesús M. Ruiz (2014)

Journal of the European Mathematical Society

Similarity:

We study here several finiteness problems concerning affine Nash manifolds M and Nash subsets X . Three main results are: (i) A Nash function on a semialgebraic subset Z of M has a Nash extension to an open semialgebraic neighborhood of Z in M , (ii) A Nash set X that has only normal crossings in M can be covered by finitely many open semialgebraic sets U equipped with Nash diffeomorphisms ( u 1 , , u m ) : U m such that U X = { u 1 u r = 0 } , (iii) Every affine Nash manifold with corners N is a closed subset of an affine Nash...

A compactness result in thin-film micromagnetics and the optimality of the Néel wall

Radu Ignat, Felix Otto (2008)

Journal of the European Mathematical Society

Similarity:

In this paper, we study a model for the magnetization in thin ferromagnetic films. It comes as a variational problem for S 1 -valued maps m ' (the magnetization) of two variables x ' : E ε ( m ' ) = ε | ' · m ' | 2 d x ' + 1 2 | ' | - 1 / 2 ' · m ' 2 d x ' . We are interested in the behavior of minimizers as ε 0 . They are expected to be S 1 -valued maps m ' of vanishing distributional divergence ' · m ' = 0 , so that appropriate boundary conditions enforce line discontinuities. For finite ε > 0 , these line discontinuities are approximated by smooth transition layers, the so-called Néel...

Integral representations for solutions of exponential Gauß-Manin systems

Marco Hien, Céline Roucairol (2008)

Bulletin de la Société Mathématique de France

Similarity:

Let f , g : U 𝔸 1 be two regular functions from the smooth affine complex variety U to the affine line. The associated exponential Gauß-Manin systems on the affine line are defined to be the cohomology sheaves of the direct image of the exponential differential system 𝒪 U e g with respect to f . We prove that its holomorphic solutions admit representations in terms of period integrals over topological chains with possibly closed support and with rapid decay condition.

Expansion in S L d ( 𝒪 K / I ) , I square-free

Péter P. Varjú (2012)

Journal of the European Mathematical Society

Similarity:

Let S be a fixed symmetric finite subset of S L d ( 𝒪 K ) that generates a Zariski dense subgroup of S L d ( 𝒪 K ) when we consider it as an algebraic group over m a t h b b Q by restriction of scalars. We prove that the Cayley graphs of S L d ( 𝒪 K / I ) with respect to the projections of S is an expander family if I ranges over square-free ideals of 𝒪 K if d = 2 and K is an arbitrary numberfield, or if d = 3 and K = .

The centralizer of a classical group and Bruhat-Tits buildings

Daniel Skodlerack (2013)

Annales de l’institut Fourier

Similarity:

Let G be a unitary group defined over a non-Archimedean local field of odd residue characteristic and let H be the centralizer of a semisimple rational Lie algebra element of G . We prove that the Bruhat-Tits building 𝔅 1 ( H ) of H can be affinely and G -equivariantly embedded in the Bruhat-Tits building 𝔅 1 ( G ) of G so that the Moy-Prasad filtrations are preserved. The latter property forces uniqueness in the following way. Let j and j be maps from 𝔅 1 ( H ) to 𝔅 1 ( G ) which preserve the Moy–Prasad filtrations....

Measure-geometric Laplacians for partially atomic measures

Marc Kesseböhmer, Tony Samuel, Hendrik Weyer (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Motivated by the fundamental theorem of calculus, and based on the works of W. Feller as well as M. Kac and M. G. Kreĭn, given an atomless Borel probability measure η supported on a compact subset of U. Freiberg and M. Zähle introduced a measure-geometric approach to define a first order differential operator η and a second order differential operator Δ η , with respect to η . We generalize this approach to measures of the form η : = ν + δ , where ν is non-atomic and δ is finitely supported. We determine...

Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt A p -weighted L p -spaces

Ryôhei Kakizawa (2018)

Czechoslovak Mathematical Journal

Similarity:

We discuss the validity of the Helmholtz decomposition of the Muckenhoupt A p -weighted L p -space ( L w p ( Ω ) ) n for any domain Ω in n , n , n 2 , 1 < p < and Muckenhoupt A p -weight w A p . Set p ' : = p / ( p - 1 ) and w ' : = w - 1 / ( p - 1 ) . Then the Helmholtz decomposition of ( L w p ( Ω ) ) n and ( L w ' p ' ( Ω ) ) n and the variational estimate of L w , π p ( Ω ) and L w ' , π p ' ( Ω ) are equivalent. Furthermore, we can replace L w , π p ( Ω ) and L w ' , π p ' ( Ω ) by L w , σ p ( Ω ) and L w ' , σ p ' ( Ω ) , respectively. The proof is based on the reflexivity and orthogonality of L w , π p ( Ω ) and L w , σ p ( Ω ) and the Hahn-Banach theorem. As a corollary of our main result, we obtain the extrapolation...