Displaying similar documents to “Surfaces incompressibles dans les variétés obtenues par chirurgie longitudinale le long d’un noeud de S 3

Problème de Plateau complexe dans les variétés kählériennes

Frédéric Sarkis (2002)

Bulletin de la Société Mathématique de France

Similarity:

L’étude du « problème de Plateau complexe » (ou « problème du bord ») dans une variété complexe X consiste à caractériser les sous-variétés réelles  Γ de X qui sont le bord de sous-ensembles analytiques de X Γ . Notre principal résultat traite le cas X = U × ω U est une variété complexe connexe et ω est une variété kählérienne disque convexe. Comme conséquence, nous obtenons des résultats de Harvey-Lawson [19], Dolbeault-Henkin [12] et Dinh [10]. Nous obtenons aussi une généralisation des théorèmes...

Dynamique de l’action du groupe modulaire et triplets de Markov

Frédéric Palesi (2012-2014)

Séminaire de théorie spectrale et géométrie

Similarity:

Soit S une surface compacte avec χ ( S ) - 1 . Nous nous intéressons ici à l’action du groupe modulaire de la surface S sur les variétés de caractères 𝒳 ( π 1 ( S ) , SL ( 2 , ) ) , lorsque S est un tore à un trou ou une sphère à quatre trous. Le but de cet article est de présenter un objet combinatoire appelé application de Markov qui nous permet de définir un domaine de discontinuité ouvert pour l’action du groupe modulaire. L’intersection de ce domaine avec l’ensemble des caractères réels permet de retrouver certains résultats...

Deux composantes du bord de 𝐈 3

Nicolas Perrin (2002)

Bulletin de la Société Mathématique de France

Similarity:

Nous étudions deux nouvelles composantes irréductibles du bord de la variété 𝐈 3 des instantons de degré 3. Nous décrivons 𝐈 3 grâce aux transformations cubo-cubiques involutives déduites de la monade de Beilinson (ce sont des transformations de Cremona particulières). Nous exhibons alors les deux composantes du bord par dégénérescence sur les transformations. Nous mettons en évidence la dualité qui les lie : les transformations cubo-cubiques de l’une sont les inverses de l’autre. Nous décrivons...

Éléments de distorsion de Diff 0 ( M )

Emmanuel Militon (2013)

Bulletin de la Société Mathématique de France

Similarity:

Dans cet article, on montre que, dans le groupe Diff 0 ( M ) des difféomorphismes isotopes à l’identité d’une variété compacte M , tout élément récurrent est de distorsion. Pour ce faire, on généralise une méthode de démonstration utilisée par Avila pour le cas de Diff 0 ( 𝕊 1 ) . La méthode nous permet de retrouver un résultat de Calegari et Freedman selon lequel tout homéomorphisme de la sphère isotope à l’identité est un élément de distorsion.

Une classe de systèmes dynamiques monotones génériquement Morse-Smale

Maxime Percie du Sert (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Dans cet article, nous généralisons les résultats de Fusco et Oliva [8], qui ont montré la transversalité de l’intersection des variétés stable et instable associées à des orbites périodiques hyperboliques, pour un système dynamique de la forme x ˙ = f ( x ) (sur un ouvert de n ) où f ' ( x ) est une matrice de Jacobi cyclique. Dans [8], cette propriété est obtenue en utilisant le nombre de changements de signe de x ˙ ( t ) qui est une fonctionnelle monotone le long des orbites. Tout d’abord, nous étendons ce résultat...

Représentations linéaires des groupes kählériens et de leurs analogues projectifs

Fréderic Campana, Benoît Claudon, Philippe Eyssidieux (2014)

Journal de l’École polytechnique — Mathématiques

Similarity:

Dans cette note nous établissons le résultat suivant, annoncé dans [CCE13] : si G GL n ( ) est l’image d’une représentation linéaire d’un groupe kählérien π 1 ( X ) , il admet un sous-groupe d’indice fini qui est l’image d’une représentation linéaire du groupe fondamental d’une variété projective complexe lisse X ' . Il s’agit donc de la solution (à indice fini près) pour les représentations linéaires d’une question usuelle demandant si le groupe...

Existence d’un feuilletage positivement transverse à un homéomorphisme de surface

Olivier Jaulent (2014)

Annales de l’institut Fourier

Similarity:

Le Calvez a montré que si F est un homéomorphisme isotope à l’identité d’une surface M admettant un relèvement F ˜ au revêtement universel n’ayant pas de points fixes, alors il existe un feuilletage topologique de M transverse à la dynamique. Nous montrons que ce résultat se généralise au cas où F ˜ admet des points fixes. Nous obtenons alors un feuilletage topologique singulier transverse à la dynamique dont les singularités sont un ensemble fermé de points fixes de  F .

Résonances de Rayleigh en dimension 2

Didier Gamblin (2004)

Bulletin de la Société Mathématique de France

Similarity:

Nous étudions les résonances de Rayleigh créées par un obstacle strictement convexe à bord analytique en dimension 2. Nous montrons qu’il existe exactement deux suites de résonances ( z k , + ) et ( z k , - ) convergeant exponentiellement vite vers l’axe réel dans un voisinage polynomial de l’axe réel, et exponentiellement proches d’une suite de quasimodes réels. De plus, k - 1 z k , ± est un symbole analytique d’ordre 0 en la variable k - 1 dont on donne le premier terme du développement. Nous construisons pour cela des...

Sur les représentations tempérées d’un groupe réductif p -adique non connexe: Cas où G / G 0 est commutatif et fini

Karem Bettaïeb (2017)

Mathematica Bohemica

Similarity:

Soit G l’ensemble des points rationnels d’un groupe algébrique réductif non connexe p -adique de caractéristique 0 . Soit G 0 la composante neutre de G . On suppose que G / G 0 est commutatif et fini. Notre motivation pour cette note est de rejoindre le cas connexe d’un papier précédent, Bettaïeb, (2003). Autrement dit, de retrouver une analogue à notre classification des représentations irréductibles tempérées de G , lorsque G est connexe. C’est-à-dire que toute représentation irréductible tempérée...

Sur le rang des jacobiennes sur un corps de fonctions

Marc Hindry, Amílcar Pacheco (2005)

Bulletin de la Société Mathématique de France

Similarity:

Soit f : 𝒳 C une surface projective fibrée au-dessus d’une courbe et définie sur un corps de nombres k . Nous donnons une interprétation du rang du groupe de Mordell-Weil sur k ( C ) de la jacobienne de la fibre générique (modulo la partie constante) en termes de moyenne des traces de Frobenius sur les fibres de f . L’énoncé fournit une réinterprétation de la conjecture de Tate pour la surface 𝒳 et généralise des résultats de Nagao, Rosen-Silverman et Wazir.

Le problème de Lehmer relatif en dimension supérieure

Emmanuel Delsinne (2009)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Nous généralisons en dimension supérieure un théorème d’Amoroso et Zannier concernant le problème de Lehmer relatif. Nous minorons la hauteur d’un point d’un tore en fonction de son indice d’obstruction sur ab , l’extension abélienne maximale de , à condition qu’il ne soit pas contenu dans une sous-variété de torsion de petit degré. Nous en déduisons une minoration du minimum essentiel d’une sous-variété non contenue dans un sous-groupe algébrique propre en fonction de son indice d’obstruction...

Le problème des translations isothermes ou construction d'une fonction analytique admettant dans un domaine donné une fonction d'automorphie donnée

Léonce Fourès (1951)

Annales de l'institut Fourier

Similarity:

Étant donnés dans un plan deux domaines C et C ' , simplement connexes, et sans point commun, et une représentation conforme biunivoque φ de C sur C ' , existe-t-il un domaine D contenant C et C ' et une fonction f holomorphe dans D , qu’elle représente sur un domaine Δ de sorte que les images de C et C ' par f soient déduites l’une de l’autre par une translation associant les images dans Δ de deux points de C et C ' associés dans D par φ  ? D et f existent sous des conditions...

Le théorème de Bertini en famille

Olivier Benoist (2011)

Bulletin de la Société Mathématique de France

Similarity:

On majore la dimension de l’ensemble des hypersurfaces de N dont l’intersection avec une variété projective intègre fixée n’est pas intègre. Les majorations obtenues sont optimales. Comme application, on construit, quand c’est possible, des hypersurfaces dont les intersections avec toutes les variétés d’une famille de variétés projectives intègres sont intègres. Le degré des hypersurfaces construites est explicite.

Un théorème de Beilinson-Bernstein pour les 𝒟 -modules arithmétiques

Christine Noot-Huyghe (2009)

Bulletin de la Société Mathématique de France

Similarity:

Un résultat important de la théorie des groupes, démontré indépendemment dans les années 80 par Beilinson et Bernstein, Brylinski et Kashiwara, est un résultat d’affinité des 𝒟 -modules sur la variété de drapeaux d’un groupe réductif sur le corps des nombres complexes. Nous donnons ici un analogue arithmétique de ce résultat, pour la catégorie des 𝒟 -modules arithmétiques sur la variété de drapeaux d’un groupe réductif sur un anneau de valuation discrète complet d’inégales caractéristiques...