Page 1

Displaying 1 – 4 of 4

Showing per page

Gaussian Integers

Yuichi Futa, Hiroyuki Okazaki, Daichi Mizushima, Yasunari Shidama (2013)

Formalized Mathematics

Gaussian integer is one of basic algebraic integers. In this article we formalize some definitions about Gaussian integers [27]. We also formalize ring (called Gaussian integer ring), Z-module and Z-algebra generated by Gaussian integer mentioned above. Moreover, we formalize some definitions about Gaussian rational numbers and Gaussian rational number field. Then we prove that the Gaussian rational number field and a quotient field of the Gaussian integer ring are isomorphic.

Group of Homography in Real Projective Plane

Roland Coghetto (2017)

Formalized Mathematics

Using the Mizar system [2], we formalized that homographies of the projective real plane (as defined in [5]), form a group. Then, we prove that, using the notations of Borsuk and Szmielew in [3] “Consider in space ℝℙ2 points P1, P2, P3, P4 of which three points are not collinear and points Q1,Q2,Q3,Q4 each three points of which are also not collinear. There exists one homography h of space ℝℙ2 such that h(Pi) = Qi for i = 1, 2, 3, 4.” (Existence Statement 52 and Existence Statement 53) [3]. Or,...

Groups – Additive Notation

Roland Coghetto (2015)

Formalized Mathematics

We translate the articles covering group theory already available in the Mizar Mathematical Library from multiplicative into additive notation. We adapt the works of Wojciech A. Trybulec [41, 42, 43] and Artur Korniłowicz [25]. In particular, these authors have defined the notions of group, abelian group, power of an element of a group, order of a group and order of an element, subgroup, coset of a subgroup, index of a subgroup, conjugation, normal subgroup, topological group, dense subset and basis...

Grzegorczyk’s Logics. Part I

Taneli Huuskonen (2015)

Formalized Mathematics

This article is the second in a series formalizing some results in my joint work with Prof. Joanna Golinska-Pilarek ([9] and [10]) concerning a logic proposed by Prof. Andrzej Grzegorczyk ([11]). This part presents the syntax and axioms of Grzegorczyk’s Logic of Descriptions (LD) as originally proposed by him, as well as some theorems not depending on any semantic constructions. There are both some clear similarities and fundamental differences between LD and the non-Fregean logics introduced by...

Currently displaying 1 – 4 of 4

Page 1