Page 1

Displaying 1 – 19 of 19

Showing per page

Semiring of Sets

Roland Coghetto (2014)

Formalized Mathematics

Schmets [22] has developed a measure theory from a generalized notion of a semiring of sets. Goguadze [15] has introduced another generalized notion of semiring of sets and proved that all known properties that semiring have according to the old definitions are preserved. We show that this two notions are almost equivalent. We note that Patriota [20] has defined this quasi-semiring. We propose the formalization of some properties developed by the authors.

Semiring of Sets: Examples

Roland Coghetto (2014)

Formalized Mathematics

This article proposes the formalization of some examples of semiring of sets proposed by Goguadze [8] and Schmets [13].

Separability of Real Normed Spaces and Its Basic Properties

Kazuhisa Nakasho, Noboru Endou (2015)

Formalized Mathematics

In this article, the separability of real normed spaces and its properties are mainly formalized. In the first section, it is proved that a real normed subspace is separable if it is generated by a countable subset. We used here the fact that the rational numbers form a dense subset of the real numbers. In the second section, the basic properties of the separable normed spaces are discussed. It is applied to isomorphic spaces via bounded linear operators and double dual spaces. In the last section,...

Sequent Calculus, Derivability, Provability. Gödel's Completeness Theorem

Marco Caminati (2011)

Formalized Mathematics

Fifth of a series of articles laying down the bases for classical first order model theory. This paper presents multiple themes: first it introduces sequents, rules and sets of rules for a first order language L as L-dependent types. Then defines derivability and provability according to a set of rules, and gives several technical lemmas binding all those concepts. Following that, it introduces a fixed set D of derivation rules, and proceeds to convert them to Mizar functorial cluster registrations...

Some Algebraic Properties of Polynomial Rings

Christoph Schwarzweller, Artur Korniłowicz (2016)

Formalized Mathematics

In this article we extend the algebraic theory of polynomial rings, formalized in Mizar [1], based on [2], [3]. After introducing constant and monic polynomials we present the canonical embedding of R into R[X] and deal with both unit and irreducible elements. We also define polynomial GCDs and show that for fields F and irreducible polynomials p the field F[X]/ is isomorphic to the field of polynomials with degree smaller than the one of p.

Some Facts about Trigonometry and Euclidean Geometry

Roland Coghetto (2014)

Formalized Mathematics

We calculate the values of the trigonometric functions for angles: [XXX] , by [16]. After defining some trigonometric identities, we demonstrate conventional trigonometric formulas in the triangle, and the geometric property, by [14], of the triangle inscribed in a semicircle, by the proposition 3.31 in [15]. Then we define the diameter of the circumscribed circle of a triangle using the definition of the area of a triangle and prove some identities of a triangle [9]. We conclude by indicating that...

Some key research problems in automated theorem proving for hardware and software verification.

Matt Kaufmann, J. Strother Moore (2004)

RACSAM

This paper sketches the state of the art in the application of mechanical theorem provers to the verification of commercial computer hardware and software. While the paper focuses on the theorem proving system ACL2, developed by the two authors, it references much related work in formal methods. The paper is intended to satisfy the curiosity of readers interested in logic and artificial intelligence as to the role of mechanized theorem proving in hardware and software design today. In addition,...

Some Properties of the Sorgenfrey Line and the Sorgenfrey Plane

Adam St. Arnaud, Piotr Rudnicki (2013)

Formalized Mathematics

We first provide a modified version of the proof in [3] that the Sorgenfrey line is T1. Here, we prove that it is in fact T2, a stronger result. Next, we prove that all subspaces of ℝ1 (that is the real line with the usual topology) are Lindel¨of. We utilize this result in the proof that the Sorgenfrey line is Lindel¨of, which is based on the proof found in [8]. Next, we construct the Sorgenfrey plane, as the product topology of the Sorgenfrey line and itself. We prove that the Sorgenfrey plane...

Some Remarkable Identities Involving Numbers

Rafał Ziobro (2014)

Formalized Mathematics

The article focuses on simple identities found for binomials, their divisibility, and basic inequalities. A general formula allowing factorization of the sum of like powers is introduced and used to prove elementary theorems for natural numbers. Formulas for short multiplication are sometimes referred in English or French as remarkable identities. The same formulas could be found in works concerning polynomial factorization, where there exists no single term for various identities. Their usability...

Stone Lattices

Adam Grabowski (2015)

Formalized Mathematics

The article continues the formalization of the lattice theory (as structures with two binary operations, not in terms of ordering relations). In the paper, the notion of a pseudocomplement in a lattice is formally introduced in Mizar, and based on this we define the notion of the skeleton and the set of dense elements in a pseudocomplemented lattice, giving the meet-decomposition of arbitrary element of a lattice as the infimum of two elements: one belonging to the skeleton, and the other which...

Submodule of free Z-module

Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama (2013)

Formalized Mathematics

In this article, we formalize a free Z-module and its property. In particular, we formalize the vector space of rational field corresponding to a free Z-module and prove formally that submodules of a free Z-module are free. Z-module is necassary for lattice problems - LLL (Lenstra, Lenstra and Lov´asz) base reduction algorithm and cryptographic systems with lattice [20]. Some theorems in this article are described by translating theorems in [11] into theorems of Z-module, however their proofs are...

Summable Family in a Commutative Group

Roland Coghetto (2015)

Formalized Mathematics

Hölzl et al. showed that it was possible to build “a generic theory of limits based on filters” in Isabelle/HOL [22], [7]. In this paper we present our formalization of this theory in Mizar [6]. First, we compare the notions of the limit of a family indexed by a directed set, or a sequence, in a metric space [30], a real normed linear space [29] and a linear topological space [14] with the concept of the limit of an image filter [16]. Then, following Bourbaki [9], [10] (TG.III, §5.1 Familles sommables...

Currently displaying 1 – 19 of 19

Page 1