Page 1

Displaying 1 – 6 of 6

Showing per page

Declarative and procedural semantics of fuzzy similarity based unification

Peter Vojtáš (2000)

Kybernetika

In this paper we argue that for fuzzy unification we need a procedural and declarative semantics (as opposed to the two valued case, where declarative semantics is hidden in the requirement that unified terms are syntactically – letter by letter – identical). We present an extension of the syntactic model of unification to allow near matches, defined using a similarity relation. We work in Hájek’s fuzzy logic in narrow sense. We base our semantics on a formal model of fuzzy logic programming extended...

Discussion of the structure of uninorms

Paweł Drygaś (2005)

Kybernetika

The paper deals with binary operations in the unit interval. We investigate connections between families of triangular norms, triangular conorms, uninorms and some decreasing functions. It is well known, that every uninorm is build by using some triangular norm and some triangular conorm. If we assume, that uninorm fulfils additional assumptions, then this triangular norm and this triangular conorm have to be ordinal sums. The intervals in ordinal sum are depending on the set of values of a decreasing...

Distributivity of ordinal sum implications over overlap and grouping functions

Deng Pan, Hongjun Zhou (2021)

Kybernetika

In 2015, a new class of fuzzy implications, called ordinal sum implications, was proposed by Su et al. They then discussed the distributivity of such ordinal sum implications with respect to t-norms and t-conorms. In this paper, we continue the study of distributivity of such ordinal sum implications over two newly-born classes of aggregation operators, namely overlap and grouping functions, respectively. The main results of this paper are characterizations of the overlap and/or grouping function...

Distributivity of strong implications over conjunctive and disjunctive uninorms

Daniel Ruiz-Aguilera, Joan Torrens (2006)

Kybernetika

This paper deals with implications defined from disjunctive uninorms U by the expression I ( x , y ) = U ( N ( x ) , y ) where N is a strong negation. The main goal is to solve the functional equation derived from the distributivity condition of these implications over conjunctive and disjunctive uninorms. Special cases are considered when the conjunctive and disjunctive uninorm are a t -norm or a t -conorm respectively. The obtained results show a lot of new solutions generalyzing those obtained in previous works when the implications...

Divergence measure between fuzzy sets using cardinality

Vladimír Kobza (2017)

Kybernetika

In this paper we extend the concept of measuring difference between two fuzzy subsets defined on a finite universe. The first main section is devoted to the local divergence measures. We propose a divergence measure based on the scalar cardinalities of fuzzy sets with respect to the basic axioms. In the next step we introduce the divergence based on the generating function and the appropriate distances. The other approach to the divergence measure is motivated by class of the rational similarity...

Division schemes under uncertainty of claims

Xianghui Li, Yang Li, Wei Zheng (2021)

Kybernetika

In some economic or social division problems, we may encounter uncertainty of claims, that is, a certain amount of estate has to be divided among some claimants who have individual claims on the estate, and the corresponding claim of each claimant can vary within a closed interval or fuzzy interval. In this paper, we classify the division problems under uncertainty of claims into three subclasses and present several division schemes from the perspective of axiomatizations, which are consistent with...

Currently displaying 1 – 6 of 6

Page 1