Displaying 421 – 440 of 1313

Showing per page

Group of Homography in Real Projective Plane

Roland Coghetto (2017)

Formalized Mathematics

Using the Mizar system [2], we formalized that homographies of the projective real plane (as defined in [5]), form a group. Then, we prove that, using the notations of Borsuk and Szmielew in [3] “Consider in space ℝℙ2 points P1, P2, P3, P4 of which three points are not collinear and points Q1,Q2,Q3,Q4 each three points of which are also not collinear. There exists one homography h of space ℝℙ2 such that h(Pi) = Qi for i = 1, 2, 3, 4.” (Existence Statement 52 and Existence Statement 53) [3]. Or,...

Groups – Additive Notation

Roland Coghetto (2015)

Formalized Mathematics

We translate the articles covering group theory already available in the Mizar Mathematical Library from multiplicative into additive notation. We adapt the works of Wojciech A. Trybulec [41, 42, 43] and Artur Korniłowicz [25]. In particular, these authors have defined the notions of group, abelian group, power of an element of a group, order of a group and order of an element, subgroup, coset of a subgroup, index of a subgroup, conjugation, normal subgroup, topological group, dense subset and basis...

Grzegorczyk’s Logics. Part I

Taneli Huuskonen (2015)

Formalized Mathematics

This article is the second in a series formalizing some results in my joint work with Prof. Joanna Golinska-Pilarek ([9] and [10]) concerning a logic proposed by Prof. Andrzej Grzegorczyk ([11]). This part presents the syntax and axioms of Grzegorczyk’s Logic of Descriptions (LD) as originally proposed by him, as well as some theorems not depending on any semantic constructions. There are both some clear similarities and fundamental differences between LD and the non-Fregean logics introduced by...

Hercules versus Hidden Hydra Helper

Jiří Matoušek, Martin Loebl (1991)

Commentationes Mathematicae Universitatis Carolinae

L. Kirby and J. Paris introduced the Hercules and Hydra game on rooted trees as a natural example of an undecidable statement in Peano Arithmetic. One can show that Hercules has a “short” strategy (he wins in a primitively recursive number of moves) and also a “long” strategy (the finiteness of the game cannot be proved in Peano Arithmetic). We investigate the conflict of the “short” and “long” intentions (a problem suggested by J. Nešetřil). After each move of Hercules (trying to kill Hydra fast)...

Holland’s theorem for pseudo-effect algebras

Anatolij Dvurečenskij (2006)

Czechoslovak Mathematical Journal

We give two variations of the Holland representation theorem for -groups and of its generalization of Glass for directed interpolation po-groups as groups of automorphisms of a linearly ordered set or of an antilattice, respectively. We show that every pseudo-effect algebra with some kind of the Riesz decomposition property as well as any pseudo M V -algebra can be represented as a pseudo-effect algebra or as a pseudo M V -algebra of automorphisms of some antilattice or of some linearly ordered set.

Homography in ℝℙ

Roland Coghetto (2016)

Formalized Mathematics

The real projective plane has been formalized in Isabelle/HOL by Timothy Makarios [13] and in Coq by Nicolas Magaud, Julien Narboux and Pascal Schreck [12]. Some definitions on the real projective spaces were introduced early in the Mizar Mathematical Library by Wojciech Leonczuk [9], Krzysztof Prazmowski [10] and by Wojciech Skaba [18]. In this article, we check with the Mizar system [4], some properties on the determinants and the Grassmann-Plücker relation in rank 3 [2], [1], [7], [16], [17]....

How to make your logic fuzzy.

Dov M. Gabbay (1996)

Mathware and Soft Computing

The aim of this paper is to provide a methodology for turning a known crisp logic into a fuzzy system. We require of the methodology that it be meaningful in general terms, using processes which are independent of the notion of fuzziness, and that it yield a considerable number of known fuzzy systems.

Currently displaying 421 – 440 of 1313