Displaying 41 – 60 of 156

Showing per page

Effect algebras and ring-like structures

Enrico G. Beltrametti, Maciej J. Maczyński (2003)

Discussiones Mathematicae - General Algebra and Applications

The dichotomic physical quantities, also called propositions, can be naturally associated to maps of the set of states into the real interval [0,1]. We show that the structure of effect algebra associated to such maps can be represented by quasiring structures, which are a generalization of Boolean rings, in such a way that the ring operation of addition can be non-associative and the ring multiplication non-distributive with respect to addition. By some natural assumption on the effect algebra,...

Entropy on effect algebras with the Riesz decomposition property I: Basic properties

Antonio Di Nola, Anatolij Dvurečenskij, Marek Hyčko, Corrado Manara (2005)

Kybernetika

We define the entropy, lower and upper entropy, and the conditional entropy of a dynamical system consisting of an effect algebra with the Riesz decomposition property, a state, and a transformation. Such effect algebras allow many refinements of two partitions. We present the basic properties of these entropies and these notions are illustrated by many examples. Entropy on MV-algebras is postponed to Part II.

Extending Coarse-Grained Measures

Anna De Simone, Pavel Pták (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

In [4] it is proved that a measure on a finite coarse-grained space extends, as a signed measure, over the entire power algebra. In [7] this result is reproved and further improved. Both the articles [4] and [7] use the proof techniques of linear spaces (i.e. they use multiplication by real scalars). In this note we show that all the results cited above can be relatively easily obtained by the Horn-Tarski extension technique in a purely combinatorial manner. We also characterize the pure measures...

Extensions of partially ordered partial abelian monoids

Sylvia Pulmannová (2006)

Czechoslovak Mathematical Journal

The notion of a partially ordered partial abelian monoid is introduced and extensions of partially ordered abelian monoids by partially ordered abelian groups are studied. Conditions for the extensions to exist are found. The cases when both the above mentioned structures have the Riesz decomposition property, or are lattice ordered, are treated. Some applications to effect algebras and MV-algebras are shown.

Fuzzy quantum logics.

Maria Luisa Dalla Chiara, Roberto Giuntini (1996)

Mathware and Soft Computing

Quantum logic is a particular example of a fuzzy quantum logic. QL is semantically characterized by the class of all quantum MV algebras. The standard quantum MV algebra is based on the set of all effects in a Hilbert space. From the physical point of view, effects represent physical properties that may be noisy and ambiguous.

Generalized homogeneous, prelattice and MV-effect algebras

Zdena Riečanová, Ivica Marinová (2005)

Kybernetika

We study unbounded versions of effect algebras. We show a necessary and sufficient condition, when lattice operations of a such generalized effect algebra P are inherited under its embeding as a proper ideal with a special property and closed under the effect sum into an effect algebra. Further we introduce conditions for a generalized homogeneous, prelattice or MV-effect effect algebras. We prove that every prelattice generalized effect algebra P is a union of generalized MV-effect algebras and...

Group-valued measures on coarse-grained quantum logics

Anna de Simone, Pavel Pták (2007)

Czechoslovak Mathematical Journal

In it was shown that a (real) signed measure on a cyclic coarse-grained quantum logic can be extended, as a signed measure, over the entire power algebra. Later () this result was re-proved (and further improved on) and, moreover, the non-negative measures were shown to allow for extensions as non-negative measures. In both cases the proof technique used was the technique of linear algebra. In this paper we further generalize the results cited by extending group-valued measures on cyclic coarse-grained...

Holland’s theorem for pseudo-effect algebras

Anatolij Dvurečenskij (2006)

Czechoslovak Mathematical Journal

We give two variations of the Holland representation theorem for -groups and of its generalization of Glass for directed interpolation po-groups as groups of automorphisms of a linearly ordered set or of an antilattice, respectively. We show that every pseudo-effect algebra with some kind of the Riesz decomposition property as well as any pseudo M V -algebra can be represented as a pseudo-effect algebra or as a pseudo M V -algebra of automorphisms of some antilattice or of some linearly ordered set.

Currently displaying 41 – 60 of 156