Displaying 161 – 180 of 191

Showing per page

Subdirectly irreducible MV-algebras

Hernando Gaitan (2003)

Czechoslovak Mathematical Journal

In this note we characterize the one-generated subdirectly irreducible MV-algebras and use this characterization to prove that a quasivariety of MV-algebras has the relative congruence extension property if and only if it is a variety.

The axioms for implication in orthologic

Ivan Chajda (2008)

Czechoslovak Mathematical Journal

We set up axioms characterizing logical connective implication in a logic derived by an ortholattice. It is a natural generalization of an orthoimplication algebra given by J. C. Abbott for a logic derived by an orthomodular lattice.

The existence of states on every Archimedean atomic lattice effect algebra with at most five blocks

Zdena Riečanová (2008)

Kybernetika

Effect algebras are very natural logical structures as carriers of probabilities and states. They were introduced for modeling of sets of propositions, properties, questions, or events with fuzziness, uncertainty or unsharpness. Nevertheless, there are effect algebras without any state, and questions about the existence (for non-modular) are still unanswered. We show that every Archimedean atomic lattice effect algebra with at most five blocks (maximal MV-subalgebras) has at least one state, which...

The prime and maximal spectra and the reticulation of BL-algebras

Laurenťiu Leuštean (2003)

Open Mathematics

In this paper we study the prime and maximal spectra of a BL-algebra, proving that the prime spectrum is a compact T 0 topological space and that the maximal spectrum is a compact Hausdorff topological space. We also define and study the reticulation of a BL-algebra.

The Role of Halaš Identity in Orthomodular Lattices

Ivan Chajda (2014)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

We prove that a certain identity introduced by R. Halaš for classifying basic algebras can be used for characterizing orthomodular lattices in the class of ortholattices with antitone involutions on every principal filter.

Topological representation for monadic implication algebras

Abad Manuel, Cimadamore Cecilia, Díaz Varela José (2009)

Open Mathematics

In this paper, every monadic implication algebra is represented as a union of a unique family of monadic filters of a suitable monadic Boolean algebra. Inspired by this representation, we introduce the notion of a monadic implication space, we give a topological representation for monadic implication algebras and we prove a dual equivalence between the category of monadic implication algebras and the category of monadic implication spaces.

Two Axiomatizations of Nelson Algebras

Adam Grabowski (2015)

Formalized Mathematics

Nelson algebras were first studied by Rasiowa and Białynicki- Birula [1] under the name N-lattices or quasi-pseudo-Boolean algebras. Later, in investigations by Monteiro and Brignole [3, 4], and [2] the name “Nelson algebras” was adopted - which is now commonly used to show the correspondence with Nelson’s paper [14] on constructive logic with strong negation. By a Nelson algebra we mean an abstract algebra 〈L, T, -, ¬, →, ⇒, ⊔, ⊓〉 where L is the carrier, − is a quasi-complementation (Rasiowa used...

Vague ideals of implication groupoids

Ravi Kumar Bandaru, K.P. Shum (2013)

Discussiones Mathematicae - General Algebra and Applications

We introduce the concept of vague ideals in a distributive implication groupoid and investigate their properties. The vague ideals of a distributive implication groupoid are also characterized.

Very true operators on MTL-algebras

Jun Tao Wang, Xiao Long Xin, Arsham Borumand Saeid (2016)

Open Mathematics

The main goal of this paper is to investigate very true MTL-algebras and prove the completeness of the very true MTL-logic. In this paper, the concept of very true operators on MTL-algebras is introduced and some related properties are investigated. Also, conditions for an MTL-algebra to be an MV-algebra and a Gödel algebra are given via this operator. Moreover, very true filters on very true MTL-algebras are studied. In particular, subdirectly irreducible very true MTL-algebras are characterized...

Currently displaying 161 – 180 of 191