A note on good pseudo BL-algebras
Pseudo BL-algebras are a noncommutative extention of BL-algebras. In this paper we study good pseudo BL-algebras and consider some classes of these algebras.
Pseudo BL-algebras are a noncommutative extention of BL-algebras. In this paper we study good pseudo BL-algebras and consider some classes of these algebras.
In [4] Blok and Pigozzi prove syntactically that RM, the propositional calculus also called R-Mingle, is algebraizable, and as a consequence there is a unique quasivariety (the so-called equivalent quasivariety semantics) associated to it. In [3] it is stated that this quasivariety is the variety of Sugihara algebras. Starting from this fact, in this paper we present an equational base for this variety obtained as a subvariety of the variety of R-algebras, found in [7] to be associated in the same...
This paper aims to propose a complete relational semantics for the so-called logic of bounded lattices, and prove a completeness theorem with regard to a class of two-sorted frames that is dually equivalent (categorically) to the variety of bounded lattices.
A finite orthomodular lattice in which every maximal Boolean subalgebra (block) has the same cardinality is called -regular, if each atom is a member of just blocks. We estimate the minimal number of blocks of -regular orthomodular lattices to be lower than of equal to regardless of .
In 2000, Figallo and Sanza introduced -valued Łukasiewicz-Moisil algebras which are both particular cases of matrix Łukasiewicz algebras and a generalization of -valued Łukasiewicz-Moisil algebras. Here we initiate an investigation into the class tLM of tense -valued Łukasiewicz-Moisil algebras (or tense LM-algebras), namely -valued Łukasiewicz-Moisil algebras endowed with two unary operations called tense operators. These algebras constitute a generalization of tense Łukasiewicz-Moisil algebras...
This short note shows that the scheme of disjunctive reasoning, a or b, not b : a, does not hold neither in proper ortholattices nor in proper de Morgan algebras. In both cases the scheme, once translated into the inequality b' · (a+b) ≤ a, forces the structure to be a boolean algebra.