Generalizations Of A Reccurence Relation For The Characteristic Polynomials Of Trees
The Gyárfás tree packing conjecture asserts that any set of trees with 2,3,...,k vertices has an (edge-disjoint) packing into the complete graph on k vertices. Gyárfás and Lehel proved that the conjecture holds in some special cases. We address the problem of packing trees into k-chromatic graphs. In particular, we prove that if all but three of the trees are stars then they have a packing into any k-chromatic graph. We also consider several other generalizations of the conjecture.
We study the generalized -connectivity as introduced by Hager in 1985, as well as the more recently introduced generalized -edge-connectivity . We determine the exact value of and for the line graphs and total graphs of trees, unicyclic graphs, and also for complete graphs for the case .
We give a necessary and sufficient condition for the existence of a tree of order with a given degree set. We relate this to a well-known linear Diophantine problem of Frobenius.
Let G = (V (G),E(G)) be a nontrivial connected graph of order n with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ N, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex set S ⊆ V (G), a tree connecting S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for each k-subset S of V (G) is called the k-rainbow index of G, denoted by...
Let G be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ ℕ, where adjacent edges may be colored the same. A tree T in G is called a rainbow tree if no two edges of T receive the same color. For a vertex set S ⊆ V (G), a tree that connects S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for every set S of k vertices of V (G) is called the k-rainbow index of G, denoted by rxk(G)....
Let G = (V,E) be a graph. The distance between two vertices u and v in a connected graph G is the length of the shortest (u-v) path in G. A set D ⊆ V(G) is a dominating set if every vertex of G is at distance at most 1 from an element of D. The domination number of G is the minimum cardinality of a dominating set of G. A set D ⊆ V(G) is a 2-distance dominating set if every vertex of G is at distance at most 2 from an element of D. The 2-distance domination number of G is the minimum cardinality...
The generalized k-connectivity κk(G) of a graph G, introduced by Hager in 1985, is a nice generalization of the classical connectivity. Recently, as a natural counterpart, we proposed the concept of generalized k-edge-connectivity λk(G). In this paper, graphs of order n such that [...] for even k are characterized.
The prime graph of a finite group is defined as follows: the set of vertices is , the set of primes dividing the order of , and two vertices , are joined by an edge (we write ) if and only if there exists an element in of order . We study the groups such that the prime graph is a tree, proving that, in this case, .