Displaying 61 – 80 of 81

Showing per page

On the number of spanning trees, the Laplacian eigenvalues, and the Laplacian Estrada index of subdivided-line graphs

Yilun Shang (2016)

Open Mathematics

As a generalization of the Sierpiński-like graphs, the subdivided-line graph Г(G) of a simple connected graph G is defined to be the line graph of the barycentric subdivision of G. In this paper we obtain a closed-form formula for the enumeration of spanning trees in Г(G), employing the theory of electrical networks. We present bounds for the largest and second smallest Laplacian eigenvalues of Г(G) in terms of the maximum degree, the number of edges, and the first Zagreb index of G. In addition,...

On the packing of two copies of a caterpillar in its third power

Christian Germain, Hamamache Kheddouci (2003)

Discussiones Mathematicae Graph Theory

H. Kheddouci, J.F. Saclé and M. Woźniak conjectured in 2000 that if a tree T is not a star, then there is an edge-disjoint placement of T into its third power.In this paper, we prove the conjecture for caterpillars.

On the spectral radius of -shape trees

Xiaoling Ma, Fei Wen (2013)

Czechoslovak Mathematical Journal

Let A ( G ) be the adjacency matrix of G . The characteristic polynomial of the adjacency matrix A is called the characteristic polynomial of the graph G and is denoted by φ ( G , λ ) or simply φ ( G ) . The spectrum of G consists of the roots (together with their multiplicities) λ 1 ( G ) λ 2 ( G ) ... λ n ( G ) of the equation φ ( G , λ ) = 0 . The largest root λ 1 ( G ) is referred to as the spectral radius of G . A -shape is a tree with exactly two of its vertices having maximal degree 4. We will denote by G ( l 1 , l 2 , ... , l 7 ) ...

On the tree graph of a connected graph

Ana Paulina Figueroa, Eduardo Rivera-Campo (2008)

Discussiones Mathematicae Graph Theory

Let G be a graph and C be a set of cycles of G. The tree graph of G defined by C, is the graph T(G,C) that has one vertex for each spanning tree of G, in which two trees T and T' are adjacent if their symmetric difference consists of two edges and the unique cycle contained in T ∪ T' is an element of C. We give a necessary and sufficient condition for this graph to be connected for the case where every edge of G belongs to at most two cycles in C.

On the tree structure of the power digraphs modulo n

Amplify Sawkmie, Madan Mohan Singh (2015)

Czechoslovak Mathematical Journal

For any two positive integers n and k 2 , let G ( n , k ) be a digraph whose set of vertices is { 0 , 1 , ... , n - 1 } and such that there is a directed edge from a vertex a to a vertex b if a k b ( mod n ) . Let n = i = 1 r p i e i be the prime factorization of n . Let P be the set of all primes dividing n and let P 1 , P 2 P be such that P 1 P 2 = P and P 1 P 2 = . A fundamental constituent of G ( n , k ) , denoted by G P 2 * ( n , k ) , is a subdigraph of G ( n , k ) induced on the set of vertices which are multiples of p i P 2 p i and are relatively prime to all primes q P 1 . L. Somer and M. Křížek proved that the trees attached to all cycle...

On Unique Minimum Dominating Sets in Some Cartesian Product Graphs

Jason T. Hedetniemi (2015)

Discussiones Mathematicae Graph Theory

Unique minimum vertex dominating sets in the Cartesian product of a graph with a complete graph are considered. We first give properties of such sets when they exist. We then show that when the first factor of the product is a tree, consideration of the tree alone is sufficient to determine if the product has a unique minimum dominating set.

On γ-labelings of trees

Gary Chartrand, David Erwin, Donald W. VanderJagt, Ping Zhang (2005)

Discussiones Mathematicae Graph Theory

Let G be a graph of order n and size m. A γ-labeling of G is a one-to-one function f:V(G) → 0,1,2,...,m that induces a labeling f’: E(G) → 1,2,...,m of the edges of G defined by f’(e) = |f(u)-f(v)| for each edge e = uv of G. The value of a γ-labeling f is v a l ( f ) = Σ e E ( G ) f ' K ( e ) . The maximum value of a γ-labeling of G is defined as v a l m a x ( G ) = m a x v a l ( f ) : f i s a γ - l a b e l i n g o f G ; while the minimum value of a γ-labeling of G is v a l m i n ( G ) = m i n v a l ( f ) : f i s a γ - l a b e l i n g o f G ; The values v a l m a x ( S p , q ) and v a l m i n ( S p , q ) are determined for double stars S p , q . We present characterizations of connected graphs G of order n for which v a l m i n ( G ) = n or v a l m i n ( G ) = n + 1 .

Currently displaying 61 – 80 of 81