Page 1

Displaying 1 – 3 of 3

Showing per page

Characterization of Line-Consistent Signed Graphs

Daniel C. Slilaty, Thomas Zaslavsky (2015)

Discussiones Mathematicae Graph Theory

The line graph of a graph with signed edges carries vertex signs. A vertex-signed graph is consistent if every circle (cycle, circuit) has positive vertex-sign product. Acharya, Acharya, and Sinha recently characterized line-consistent signed graphs, i.e., edge-signed graphs whose line graphs, with the naturally induced vertex signature, are consistent. Their proof applies Hoede’s relatively difficult characterization of consistent vertex-signed graphs. We give a simple proof that does not depend...

Cheeger inequalities for unbounded graph Laplacians

Frank Bauer, Matthias Keller, Radosław K. Wojciechowski (2015)

Journal of the European Mathematical Society

We use the concept of intrinsic metrics to give a new definition for an isoperimetric constant of a graph. We use this novel isoperimetric constant to prove a Cheeger-type estimate for the bottom of the spectrum which is nontrivial even if the vertex degrees are unbounded.

Currently displaying 1 – 3 of 3

Page 1