Page 1

Displaying 1 – 8 of 8

Showing per page

The 1 , 2 , 3-Conjecture And 1 , 2-Conjecture For Sparse Graphs

Daniel W. Cranston, Sogol Jahanbekam, Douglas B. West (2014)

Discussiones Mathematicae Graph Theory

The 1, 2, 3-Conjecture states that the edges of a graph without isolated edges can be labeled from {1, 2, 3} so that the sums of labels at adjacent vertices are distinct. The 1, 2-Conjecture states that if vertices also receive labels and the vertex label is added to the sum of its incident edge labels, then adjacent vertices can be distinguished using only {1, 2}. We show that various configurations cannot occur in minimal counterexamples to these conjectures. Discharging then confirms the conjectures...

The compositional construction of Markov processes II

L. de Francesco Albasini, N. Sabadini, R. F. C. Walters (2011)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We add sequential operations to the categorical algebra of weighted and Markov automata introduced in [L. de Francesco Albasini, N. Sabadini and R.F.C. Walters, 
arXiv:0909.4136]. The extra expressiveness of the algebra permits the description of hierarchical systems, and ones with evolving geometry. We make a comparison with the probabilistic automata of Lynch et al. [SIAM J. Comput. 37 (2007) 977–1013].

The compositional construction of Markov processes II

L. de Francesco Albasini, N. Sabadini, R. F.C. Walters (2011)

RAIRO - Theoretical Informatics and Applications

We add sequential operations to the categorical algebra of weighted and Markov automata introduced in [L. de Francesco Albasini, N. Sabadini and R.F.C. Walters, 
arXiv:0909.4136]. The extra expressiveness of the algebra permits the description of hierarchical systems, and ones with evolving geometry. We make a comparison with the probabilistic automata of Lynch et al. [SIAM J. Comput.37 (2007) 977–1013].

The signed matchings in graphs

Changping Wang (2008)

Discussiones Mathematicae Graph Theory

Let G be a graph with vertex set V(G) and edge set E(G). A signed matching is a function x: E(G) → -1,1 satisfying e E G ( v ) x ( e ) 1 for every v ∈ V(G), where E G ( v ) = u v E ( G ) | u V ( G ) . The maximum of the values of e E ( G ) x ( e ) , taken over all signed matchings x, is called the signed matching number and is denoted by β’₁(G). In this paper, we study the complexity of the maximum signed matching problem. We show that a maximum signed matching can be found in strongly polynomial-time. We present sharp upper and lower bounds on β’₁(G) for general graphs....

Towards a characterization of bipartite switching classes by means of forbidden subgraphs

Jurriaan Hage, Tero Harju (2007)

Discussiones Mathematicae Graph Theory

We investigate which switching classes do not contain a bipartite graph. Our final aim is a characterization by means of a set of critically non-bipartite graphs: they do not have a bipartite switch, but every induced proper subgraph does. In addition to the odd cycles, we list a number of exceptional cases and prove that these are indeed critically non-bipartite. Finally, we give a number of structural results towards proving the fact that we have indeed found them all. The search for critically...

Transitive closure and transitive reduction in bidirected graphs

Ouahiba Bessouf, Abdelkader Khelladi, Thomas Zaslavsky (2019)

Czechoslovak Mathematical Journal

In a bidirected graph, an edge has a direction at each end, so bidirected graphs generalize directed graphs. We generalize the definitions of transitive closure and transitive reduction from directed graphs to bidirected graphs by introducing new notions of bipath and bicircuit that generalize directed paths and cycles. We show how transitive reduction is related to transitive closure and to the matroids of the signed graph corresponding to the bidirected graph.

Currently displaying 1 – 8 of 8

Page 1