On Principal Graphs and Weak Duality.
A flower is a coin graph representation of the wheel graph. A petal of a flower is an outer coin connected to the center coin. The results of this paper are twofold. First we derive a parametrization of all the rational (and hence integer) radii coins of the 3-petal flower, also known as Apollonian circles or Soddy circles. Secondly we consider a general n-petal flower and show there is a unique irreducible polynomial Pₙ in n variables over the rationals ℚ, the affine variety of which contains the...
We assign to each pair of positive integers and a digraph whose set of vertices is and for which there is a directed edge from to if . The digraph is semiregular if there exists a positive integer such that each vertex of the digraph has indegree or 0. Generalizing earlier results of the authors for the case in which , we characterize all semiregular digraphs when is arbitrary.
Let G be a finite group of order n. The strong power graph Ps(G) of G is the undirected graph whose vertices are the elements of G such that two distinct vertices a and b are adjacent if am1=bm2 for some positive integers m1, m2 < n. In this article we classify all groups G for which Ps(G) is a line graph. Spectrum and permanent of the Laplacian matrix of the strong power graph Ps(G) are found for any finite group G.
Let be a finite group. The prime graph of is a graph whose vertex set is the set of prime divisors of and two distinct primes and are joined by an edge, whenever contains an element of order . The prime graph of is denoted by . It is proved that some finite groups are uniquely determined by their prime graph. In this paper, we show that if is a finite group such that , where , then has a unique nonabelian composition factor isomorphic to or .
Let be a finite group. The intersection graph of is an undirected graph without loops and multiple edges defined as follows: the vertex set is the set of all proper nontrivial subgroups of , and two distinct vertices and are adjacent if , where denotes the trivial subgroup of order . A question was posed by Shen (2010) whether the diameters of intersection graphs of finite non-abelian simple groups have an upper bound. We answer the question and show that the diameters of intersection...