Value-True Walks in Finite, Connected, Valuated Graphs.
The AutoGraphiX 2 system is used to compare the index of a connected graph G with a number of other graph theoretical invariants, i.e., chromatic number, maximum, minimum and average degree, diameter, radius, average distance, independence and domination numbers. In each case, best possible lower and upper bounds, in terms of the order of G, are sought for sums, differences, ratios and products of the index and another invariant. There are 72 cases altogether: in 7 cases known results were reproduced,...
In this paper, we give a sufficient condition for a graph to contain vertex-disjoint stars of a given size. It is proved that if the minimum degree of the graph is at least k+t-1 and the order is at least (t+1)k + O(t²), then the graph contains k vertex-disjoint copies of a star . The condition on the minimum degree is sharp, and there is an example showing that the term O(t²) for the number of uncovered vertices is necessary in a sense.
A set of vertices in a graph is called a paired-dominating set if it dominates and contains at least one perfect matching. We characterize the set of vertices of a tree that are contained in all minimum paired-dominating sets of the tree.