-saturated graphs of minimum size
An additive hereditary graph property is any class of simple graphs, which is closed under isomorphisms unions and taking subgraphs. Let denote a class of all such properties. In the paper, we consider H-reducible over properties with H being a fixed graph. The finiteness of the sets of all minimal forbidden graphs is analyzed for such properties.
The energy of a molecular graph G is defined as the summation of the absolute values of the eigenvalues of adjacency matrix of a graph G. In this paper, an infinite class of fullerene graphs with 10n vertices, n ≥ 2, is considered. By proving centrosymmetricity of the adjacency matrix of these fullerene graphs, a lower bound for its energy is given. Our method is general and can be extended to other class of fullerene graphs.
The Chvátal-Erdös theorems imply that if G is a graph of order n ≥ 3 with κ(G) ≥ α(G), then G is hamiltonian, and if κ(G) > α(G), then G is hamiltonian-connected. We generalize these results by replacing the connectivity and independence number conditions with a weaker minimum degree and independence number condition in the presence of sufficient connectivity. More specifically, it is noted that if G is a graph of order n and k ≥ 2 is a positive integer such that κ(G) ≥ k, δ(G) > (n+k²-k)/(k+1),...
In this paper, two notions, the clique irreducibility and clique vertex irreducibility are discussed. A graph G is clique irreducible if every clique in G of size at least two, has an edge which does not lie in any other clique of G and it is clique vertex irreducible if every clique in G has a vertex which does not lie in any other clique of G. It is proved that L(G) is clique irreducible if and only if every triangle in G has a vertex of degree two. The conditions for the iterations of line graph,...
A dominating set in a graph is a connected dominating set of if it induces a connected subgraph of . The minimum number of vertices in a connected dominating set of is called the connected domination number of , and is denoted by . Let be a spanning subgraph of and let be the complement of relative to ; that is, is a factorization of . The graph is --critical relative to if and for each edge . First, we discuss some classes of graphs whether they are -critical relative...
For an ordered set of vertices and a vertex in a connected graph , the representation of with respect to is the -vector = (, , where represents the distance between the vertices and . The set is a resolving set for if distinct vertices of have distinct representations with respect to . A resolving set for containing a minimum number of vertices is a basis for . The dimension is the number of vertices in a basis for . A resolving set of is connected if the subgraph...