The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 4 of 4

Showing per page

Weak Saturation Numbers for Sparse Graphs

Ralph J. Faudree, Ronald J. Gould, Michael S. Jacobson (2013)

Discussiones Mathematicae Graph Theory

For a fixed graph F, a graph G is F-saturated if there is no copy of F in G, but for any edge e ∉ G, there is a copy of F in G + e. The minimum number of edges in an F-saturated graph of order n will be denoted by sat(n, F). A graph G is weakly F-saturated if there is an ordering of the missing edges of G so that if they are added one at a time, each edge added creates a new copy of F. The minimum size of a weakly F-saturated graph G of order n will be denoted by wsat(n, F). The graphs of order...

Weakly P-saturated graphs

Mieczysław Borowiecki, Elżbieta Sidorowicz (2002)

Discussiones Mathematicae Graph Theory

For a hereditary property let k ( G ) denote the number of forbidden subgraphs contained in G. A graph G is said to be weakly -saturated, if G has the property and there is a sequence of edges of G̅, say e , e , . . . , e l , such that the chain of graphs G = G G 0 + e G + e . . . G l - 1 + e l = G l = K n ( G i + 1 = G i + e i + 1 ) has the following property: k ( G i + 1 ) > k ( G i ) , 0 ≤ i ≤ l-1. In this paper we shall investigate some properties of weakly saturated graphs. We will find upper bound for the minimum number of edges of weakly ₖ-saturated graphs of order n. We shall determine the number wsat(n,) for some...

Wiener index of graphs with fixed number of pendant or cut-vertices

Dinesh Pandey, Kamal Lochan Patra (2022)

Czechoslovak Mathematical Journal

The Wiener index of a connected graph is defined as the sum of the distances between all unordered pairs of its vertices. We characterize the graphs which extremize the Wiener index among all graphs on n vertices with k pendant vertices. We also characterize the graph which minimizes the Wiener index over the graphs on n vertices with s cut-vertices.

Currently displaying 1 – 4 of 4

Page 1