Random orderings and unique ergodicity of automorphism groups
We show that the only random orderings of finite graphs that are invariant under isomorphism and induced subgraph are the uniform random orderings. We show how this implies the unique ergodicity of the automorphism group of the random graph. We give similar theorems for other structures, including, for example, metric spaces. These give the first examples of uniquely ergodic groups, other than compact groups and extremely amenable groups, after Glasner andWeiss’s example of the group of all permutations...