Page 1

Displaying 1 – 8 of 8

Showing per page

The chromatic equivalence class of graph B n - 6 , 1 , 2 ¯

Jianfeng Wang, Qiongxiang Huang, Chengfu Ye, Ruying Liu (2008)

Discussiones Mathematicae Graph Theory

By h(G,x) and P(G,λ) we denote the adjoint polynomial and the chromatic polynomial of graph G, respectively. A new invariant of graph G, which is the fourth character R₄(G), is given in this paper. Using the properties of the adjoint polynomials, the adjoint equivalence class of graph B n - 6 , 1 , 2 is determined, which can be regarded as the continuance of the paper written by Wang et al. [J. Wang, R. Liu, C. Ye and Q. Huang, A complete solution to the chromatic equivalence class of graph B n - 7 , 1 , 3 ¯ , Discrete Math....

The list Distinguishing Number Equals the Distinguishing Number for Interval Graphs

Poppy Immel, Paul S. Wenger (2017)

Discussiones Mathematicae Graph Theory

A distinguishing coloring of a graph G is a coloring of the vertices so that every nontrivial automorphism of G maps some vertex to a vertex with a different color. The distinguishing number of G is the minimum k such that G has a distinguishing coloring where each vertex is assigned a color from {1, . . . , k}. A list assignment to G is an assignment L = {L(v)}v∈V (G) of lists of colors to the vertices of G. A distinguishing L-coloring of G is a distinguishing coloring of G where the color of each...

The Ryjáček Closure and a Forbidden Subgraph

Akira Saito, Liming Xiong (2016)

Discussiones Mathematicae Graph Theory

The Ryjáček closure is a powerful tool in the study of Hamiltonian properties of claw-free graphs. Because of its usefulness, we may hope to use it in the classes of graphs defined by another forbidden subgraph. In this note, we give a negative answer to this hope, and show that the claw is the only forbidden subgraph that produces non-trivial results on Hamiltonicity by the use of the Ryjáček closure.

The Smallest Non-Autograph

Benjamin S. Baumer, Yijin Wei, Gary S. Bloom (2016)

Discussiones Mathematicae Graph Theory

Suppose that G is a simple, vertex-labeled graph and that S is a multiset. Then if there exists a one-to-one mapping between the elements of S and the vertices of G, such that edges in G exist if and only if the absolute difference of the corresponding vertex labels exist in S, then G is an autograph, and S is a signature for G. While it is known that many common families of graphs are autographs, and that infinitely many graphs are not autographs, a non-autograph has never been exhibited. In this...

Topological dynamics of unordered Ramsey structures

Moritz Müller, András Pongrácz (2015)

Fundamenta Mathematicae

We investigate the connections between Ramsey properties of Fraïssé classes and the universal minimal flow M ( G ) of the automorphism group G of their Fraïssé limits. As an extension of a result of Kechris, Pestov and Todorcevic (2005) we show that if the class has finite Ramsey degree for embeddings, then this degree equals the size of M ( G ) . We give a partial answer to a question of Angel, Kechris and Lyons (2014) showing that if is a relational Ramsey class and G is amenable, then M ( G ) admits a unique invariant...

Currently displaying 1 – 8 of 8

Page 1