Perfect matchings in -regular graphs.
Bermond conjectured that if G is Hamilton cycle decomposable, then L(G), the line graph of G, is Hamilton cycle decomposable. In this paper, we construct a perfect set of Euler tours for the complete tripartite graph Kp,p,p for any prime p and hence prove Bermond’s conjecture for G = Kp,p,p.
We consider the maximum weight perfectly matchable subgraph problem on a bipartite graph G=(UV,E) with respect to given nonnegative weights of its edges. We show that G has a perfect matching if and only if some vector indexed by the nodes in UV is a base of an extended polymatroid associated with a submodular function defined on the subsets of UV. The dual problem of the separation problem for the extended polymatroid is transformed to the special maximum flow problem on G. In this paper, we give...
In this paper we give all pairs of non mutually placeable (p,q)-bipartite graphs G and H such that 2 ≤ p ≤ q, e(H) ≤ p and e(G)+e(H) ≤ 2p+q-1.
Suppose that red and blue points occur as independent homogeneous Poisson processes in ℝd. We investigate translation-invariant schemes for perfectly matching the red points to the blue points. For any such scheme in dimensions d=1, 2, the matching distance X from a typical point to its partner must have infinite d/2th moment, while in dimensions d≥3 there exist schemes where X has finite exponential moments. The Gale–Shapley stable marriage is one natural matching scheme, obtained by iteratively...
We consider a special packing-covering pair of problems. The packing problem is a natural generalization of finding a (weighted) maximum independent set in an interval graph, the covering problem generalizes the problem of finding a (weighted) minimum clique cover in an interval graph. The problem pair involves weights and capacities; we consider the case of unit weights and the case of unit capacities. In each case we describe a simple algorithm that outputs a solution to the packing problem and...
We consider a special packing-covering pair of problems. The packing problem is a natural generalization of finding a (weighted) maximum independent set in an interval graph, the covering problem generalizes the problem of finding a (weighted) minimum clique cover in an interval graph. The problem pair involves weights and capacities; we consider the case of unit weights and the case of unit capacities. In each case we describe a simple algorithm that outputs a solution to the packing problem and...
Uno de los aspectos claves en las telecomunicaciones está relacionado con el uso de los códigos correctores de errores para la transmisión de información. Actualmente se utiliza una clase muy simple de códigos; la implementación física de un código corrector de errores es complicada y costosa. En el campo de la Informática Teórica se intenta abordar el problema de los códigos correctores de errores desde diferentes ángulos. Uno de ellos es el de la Combinatoria Algebraica y, en particular, los grafos...