Loading [MathJax]/extensions/MathZoom.js
Displaying 21 –
40 of
376
By a chordal graph is meant a graph with no induced cycle of length . By a ternary system is meant an ordered pair , where is a finite nonempty set, and . Ternary systems satisfying certain axioms (A1)–(A5) are studied in this paper; note that these axioms can be formulated in a language of the first-order logic. For every finite nonempty set , a bijective mapping from the set of all connected chordal graphs with onto the set of all ternary systems satisfying the axioms (A1)–(A5) is...
Unichord-free graphs are defined as having no cycle with a unique chord. They have appeared in several papers recently and are also characterized by minimal separators always inducing edgeless subgraphs (in contrast to characterizing chordal graphs by minimal separators always inducing complete subgraphs). A new characterization of unichord-free graphs corresponds to a suitable reformulation of the standard simplicial vertex characterization of chordal graphs.
The problem of finding minimal vertex number of graphs with a given automorphism group is addressed in this article for the case of cyclic groups. This problem was considered earlier by other authors. We give a construction of an undirected graph having vertices and automorphism group cyclic of order , . As a special case we get graphs with vertices and cyclic automorphism groups of order . It can revive interest in related problems.
Let denote a set of additive hereditary graph properties. It is a known fact that a partially ordered set is a complete distributive lattice. We present results when a join of two additive hereditary graph properties in has a finite or infinite family of minimal forbidden subgraphs.
B-products of graphs and their generalizations were introduced in [4]. We determined the parameters k, l of (k,l)-kernels in generalized B-products of graphs. These results are generalizations of theorems from [2].
Let ⁿ be a given set of unlabeled simple graphs of order n. A maximal common subgraph of the graphs of the set ⁿ is a common subgraph F of order n of each member of ⁿ, that is not properly contained in any larger common subgraph of each member of ⁿ. By well-known Dirac’s Theorem, the Dirac’s family ⁿ of the graphs of order n and minimum degree δ ≥ [n/2] has a maximal common subgraph containing Cₙ. In this note we study the problem of determining all maximal common subgraphs of the Dirac’s family...
A unit disk graph is the intersection graph of a family of unit disks in the plane. If the disks do not overlap, it is also a unit coin graph or penny graph. It is known that finding a maximum independent set in a unit disk graph is a NP-hard problem. In this work we extend this result to penny graphs. Furthermore, we prove that finding a minimum clique partition in a penny graph is also NP-hard, and present two linear-time approximation algorithms for the computation of clique partitions: a 3-approximation...
A unit disk graph is the intersection graph
of a family of unit disks in the plane.
If the disks do not overlap, it is also a unit coin graph or penny graph.
It is known that finding a maximum independent set
in a unit disk graph is a NP-hard problem.
In this work we extend this result to penny graphs.
Furthermore, we prove that finding a minimum clique partition
in a penny graph is also NP-hard, and present
two linear-time approximation algorithms for the computation of clique partitions:
a 3-approximation...
We study domination between different types of walks connecting two non-adjacent vertices u and v of a graph (shortest paths, induced paths, paths, tolled walks). We succeeded in characterizing those graphs in which every uv-walk of one particular kind dominates every uv-walk of other specific kind. We thereby obtained new characterizations of standard graph classes like chordal, interval and superfragile graphs.
Strongly perfect graphs were introduced by C. Berge and P. Duchet in [1]. In [4], [3] the following was studied: the problem of strong perfectness for the Cartesian product, the tensor product, the symmetrical difference of n, n ≥ 2, graphs and for the generalized Cartesian product of graphs. Co-strong perfectness was first studied by G. Ravindra andD. Basavayya [5]. In this paper we discuss strong perfectness and co-strong perfectness for the generalized composition (the lexicographic product)...
Currently displaying 21 –
40 of
376