Chebyshev inequality for random graphs.
Chvátal’s Condition is a sufficient condition for a spanning cycle in an n-vertex graph. The condition is that when the vertex degrees are d₁, ...,dₙ in nondecreasing order, i < n/2 implies that or . We prove that this condition cannot hold in both a graph and its complement, and we raise the problem of finding its asymptotic probability in the random graph with edge probability 1/2.
In the past years, many properties of the largest connected components of critical percolation on the high-dimensional torus, such as their sizes and diameter, have been established. The order of magnitude of these quantities equals the one for percolation on the complete graph or Erdős–Rényi random graph, raising the question whether the scaling limits of the largest connected components, as identified by Aldous (1997), are also equal. In this paper, we investigate the cycle structureof the largest...