Page 1

Displaying 1 – 11 of 11

Showing per page

Scale-free percolation

Maria Deijfen, Remco van der Hofstad, Gerard Hooghiemstra (2013)

Annales de l'I.H.P. Probabilités et statistiques

We formulate and study a model for inhomogeneous long-range percolation on d . Each vertex x d is assigned a non-negative weight W x , where ( W x ) x d are i.i.d. random variables. Conditionally on the weights, and given two parameters α , λ g t ; 0 , the edges are independent and the probability that there is an edge between x and y is given by p x y = 1 - exp { - λ W x W y / | x - y | α } . The parameter λ is the percolation parameter, while α describes the long-range nature of the model. We focus on the degree distribution in the resulting graph, on whether there...

Selections and weak orderability

Michael Hrušák, Iván Martínez-Ruiz (2009)

Fundamenta Mathematicae

We answer a question of van Mill and Wattel by showing that there is a separable locally compact space which admits a continuous weak selection but is not weakly orderable. Furthermore, we show that a separable space which admits a continuous weak selection can be covered by two weakly orderable spaces. Finally, we give a partial answer to a question of Gutev and Nogura by showing that a separable space which admits a continuous weak selection admits a continuous selection for all finite sets.

Size of the giant component in a random geometric graph

Ghurumuruhan Ganesan (2013)

Annales de l'I.H.P. Probabilités et statistiques

In this paper, we study the size of the giant component C G in the random geometric graph G = G ( n , r n , f ) of n nodes independently distributed each according to a certain density f ( · ) in [ 0 , 1 ] 2 satisfying inf x [ 0 , 1 ] 2 f ( x ) g t ; 0 . If c 1 n r n 2 c 2 log n n for some positive constants c 1 , c 2 and n r n 2 as n , we show that the giant component of G contains at least n - o ( n ) nodes with probability at least 1 - e - β n r n 2 for all n and for some positive constant β ....

Smooth and sharp thresholds for random k -XOR-CNF satisfiability

Nadia Creignou, Hervé Daudé (2003)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

The aim of this paper is to study the threshold behavior for the satisfiability property of a random k -XOR-CNF formula or equivalently for the consistency of a random Boolean linear system with k variables per equation. For k 3 we show the existence of a sharp threshold for the satisfiability of a random k -XOR-CNF formula, whereas there are smooth thresholds for k = 1 and k = 2 .

Smooth and sharp thresholds for random {k}-XOR-CNF satisfiability

Nadia Creignou, Hervé Daudé (2010)

RAIRO - Theoretical Informatics and Applications

The aim of this paper is to study the threshold behavior for the satisfiability property of a random k-XOR-CNF formula or equivalently for the consistency of a random Boolean linear system with k variables per equation. For k ≥ 3 we show the existence of a sharp threshold for the satisfiability of a random k-XOR-CNF formula, whereas there are smooth thresholds for k=1 and k=2.

Currently displaying 1 – 11 of 11

Page 1